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Abstract

Switching costs that arise in repeated purchases of durable goods cause buyers to face con-

flicting incentives: facilitating competition among potential sellers leads to lower prices while

restricting competition among them allows buyers to avoid the disruption associated with intro-

ducing a new brand. I study this trade-off in an auction environment with bid preference that

allows buyers to favor certain sellers. I construct novel data on fleet renewal by municipal bus

operators in Poland who use a common format of scoring auctions to implement bid preference.

Consistent with their incentive of avoiding switching costs, the operators favor incumbent bus

producers. Motivated by this finding, I develop and estimate a structural model of public pro-

curement with bidder favoritism to quantify the main driving forces of the trade-off. Estimates

suggest that bid preference programs can balance the trade-off if an auction attracts sufficiently

many bidders, whereas forcibly promoting competition while ignoring the underlying lock-in

relationship between buyers and incumbent sellers would lead to counter-productive outcomes.

Therefore, the design of public procurement should not only target achieving low prices but

also account for other aspects contributing to buyers’ welfare.
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1 Introduction

Switching costs arise when buyers repeatedly purchase durable goods, for example, vehicles in

a fleet, machinery in production plants, office equipment, or software. Introduction of a new

brand may generate costs related to integrating it into existing infrastructure, adding a set

of skills to the staff who need to know how to operate, maintain and repair new equipment,

and increasing storage capacity for spare parts. These switching costs, also referred to as

disruption costs, cause buyers to face conflicting incentives. Facilitating competition among

potential sellers leads to lower prices while restricting competition among potential sellers

allows buyers to avoid the disruption associated with introducing a new brand.

Proper management of buyers’ trade-off between avoiding switching costs and minimizing

prices is a task of particular interest from the point of view of public policy when buyers

use public funds to cover their expenses. Public procurement of goods and services is a

vital part of modern economies, accounting for 10%–20% of GDP in developed countries.

Its significance is continuously increasing, as, among others, governments mandate buyers’

transition to more environmentally friendly technologies and generously subsidize these ef-

forts. In addition, many buyers use taxpayer money not only to cover purchases but also

other expenses related to their economic activity. Finding ways of promoting competition

while taking into account buyers’ switching costs would allow for a more efficient allocation

of public funds.

Auctions are a prevalent format in public procurement due to their allocative efficiency

and procedural transparency. In a standard setting, the contract is awarded to the lowest

bidder, minimizing the buyer’s purchase cost. However, if the identity of the winner matters

from the point of view of buyer’s welfare, the standard setting may not be the optimal choice.

Accommodating bid preference into the auction mechanism is a frequently used refinement of

the standard auction format when buyers have additional goals beyond minimizing the cost

of purchase. Bid preference allows buyers to favor some bidders over others. Specifically, the

buyer assigns weights—known as bidder preference weights—to each potential seller before

bidding. The winner is a bidder whose effective bid, the product of the price bid and its

preference weight, is the lowest. The way the weights affect the ranking of the bids can
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be interpreted in terms of assigning bid credits or discounts. For example, 10% bid credit

implies that a bid of $10 is treated as $11 in the ranking. If it happens to be the winning

bid, the buyer pays the original price of $10.

Auctions with bid preference are a significant part of public procurement. In 2006,

20% of the dollar value of U.S. federal government procurement was awarded to favored

bidders(Krasnokutskaya and Seim, 2011). Bid preference is also present in many business-

to-business settings, including so-called Tier II programs used by large private businesses,

including Chevron, Coca-Cola, Microsoft, and MillerCoors (Mummalaneni, 2022). Typically,

preferential treatment is given to sellers who may be disadvantaged in some way compared

to the competitors, including local or domestic firms, small entrepreneurs, and women- or

minority-owned businesses.

I introduce a different possible rationalization for bid preference in procurement auctions.

Since it affects the relative chances of winning by particular bidders, bid preference may

allow buyers facing switching costs to account for both sides of their trade-off in the auction

design. By favoring incumbent sellers, buyers increase the incumbents’ chances of winning

and provide incentives for non-incumbents to bid more aggressively, mitigating the upward

pressure on prices. However, if participation in auctions is costly for bidders, too much

discrimination may discourage non-incumbents from submitting a bid. If this is the case, bid

preference fails to balance the buyer’s trade-off, becoming a tool for stifling the competition

and allowing incumbents to enjoy monopolistic rents.

The main goal of this paper is to understand the challenges resulting from a lock-in

relationship between buyers and incumbent providers and propose solutions to improve the

efficiency of public procurement under the presence of disruption costs. To achieve this goal,

I study the behavior of Polish public municipal bus operators who repeatedly procure new

buses via auctions with bid preference. I construct a novel dataset on auction design linked

to operator’s fleets and estimate a structural model to quantify the main driving forces of

the trade-off: producers’ costs of participation in an auction and buyers’ disruption costs

associated with the introduction of a new brand to the fleet. Lastly, I use the estimates

to perform counterfactual exercises to assess whether bid preference programs can balance
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buyers’ trade-off between minimizing price and avoiding switching costs and suggest policies

targeting improvement in buyers’ welfare.

The case of Polish municipal buses is particularly suitable for studying the trade-off.

Bus operators are likely facing switching costs related to the introduction of a new brand

to their fleet. Even though they are not legally allowed to openly favor or discriminate

against potential bidders, they implement bid preference implicitly using a prevalent format

of scoring auctions1. In scoring auctions, bids are ranked according to the scoring rule

announced by the buyer before bidding and containing a list of scoring criteria assigning

points in many dimensions of the demanded order. The choice of scoring criteria remains at

the buyer’s discretion and the operators tend to choose criteria related to bus technological

solutions that are specific to particular bus producers. I show that the scoring auction

designed in this way becomes effectively an auction with bid preference. Using the official

auction specifications from over 1000 auctions organized between 2006 and 2022, I reconstruct

bidder preference weights implied by the number of points assigned to the potential bidders

in criteria related to bus technological solutions and link them to the evolution of operators’

fleets. Moreover, the institutional environment creates substantial barriers to entry for new

bus producers, limiting fringe bidding and enabling me to identify the set of potential bidders

in every auction. Lastly, operators renew only a fraction of their fleet at a time, which allows

me to follow changes in operator’s favoritism towards particular bidders in a response to

changes in the fleet and distill the effects of switching costs from the effects of unobserved

qualities of a match in operator-producer pairs.

Data suggest that operators systematically favor incumbent producers, consistent with

their motive to avoid switching costs. In turn, producers who show up in auctions are

mainly the favored ones. Guided by these observations, I develop and estimate a struc-

tural model of interactions between a buyer and bidders via auctions with bidder preference

weights. The model builds on the empirical auction literature (Krasnokutskaya and Seim,

2011; Krasnokutskaya, 2011; Athey, Levin, and Seira, 2011) and adapts it to the specifics of

1This auction format is pro-actively promoted in European Union (directives 2014/24/EU and
2014/25/EU), and some industries are required to use it in their purchases. As a result, 60% of all auctions
are scoring auctions. They are also present in the US, for example in a form of A+B auctions for highway
construction (Lewis and Bajari, 2011).
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my application. Specifically, it encompasses three stages: the operator choosing the degree

of favoritism towards potential bidders, potential bidders choosing whether to pay an entry

cost and participate in an auction, and actual bidders submitting their bids. Since bidder

preference weights are implemented via scoring rule criteria related to producers’ technology,

the weights intended by the operators may not be the same as the weights actually used to

rank the bids due to (possibly small) technology shocks. To account for this, I introduce

a random disturbance into the process of assigning bidder preference weights, generalizing

the standard model of the auction with bid preference. The data-generating process implies

arbitrary patterns of bidder preference weights at the auction level, which constitutes a sig-

nificant departure from the data environment usually exploited in the literature (Hubbard

and Paarsch, 2014) and affects the characterization of bidding equilibrium (Lebrun, 2006). I

adapt the numerical method of solving for optimal bidding to account for arbitrary patterns

of bidder preference weights and the associated phenomenon of bid separation (Hubbard and

Kirkegaard, 2019). Lastly, I take advantage of the richness of my data and use a wide range

of fleet variables to measure the impacts of various aspects of switching costs.

The estimated average entry costs amount to between 8.4% and 10.3% of the project

completion cost and significantly discourage participation, particularly among unfavored po-

tential bidders. The results suggest the presence of a two-sided lock-in relationship between

operators and producers. Operators’ disruption costs are related both to introducing a new

brand to their fleet and maintaining higher fleet diversity. Operators are willing to pay

28.2% of the average order value for a win of the most suitable incumbent. They also tend

to increase the degree of discrimination with an increase in the number of distinct brands in

their fleets. On the producer side, the lock-in manifests itself in a form of an incumbent ad-

vantage that originates from already-established business relationships between an operator

and a producer. Incumbent advantage decreases incumbents’ entry costs making it easier

for them to participate in auctions regardless of bid preference.

The main result of this paper shows that one can increase the efficiency of public funds

allocation by accounting for other aspects of buyers’ welfare in addition to targeting low

prices while designing procurement markets. Counterfactual experiments confirm that bid

preference programs can balance the trade-off between price and switching costs by reallo-
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cating winning probability towards the favored bidders. A necessary condition for this to

happen is that the auctioneer manages to attract sufficiently many bidders, which may be

difficult to achieve because of the incumbent advantage in entry costs as well as a relatively

low number of potential bidders. In turn, forcibly promoting competition while ignoring the

underlying lock-in relationship between buyers and incumbent sellers would have a detri-

mental effect on buyers’ welfare. It is often the case that benefits from lower prices are offset

by an increase in costs associated with excessive switching. A policy improving the efficiency

of public procurement under the presence of disruption costs should both encourage com-

petition and address the lock-in relationship between operators and incumbent producers.

I discuss several policies based on subsidizing potential bidders’ entry, market entry of new

potential bidders, and expanding the offer of existing potential bidders, as well as redesigning

the timing and scale of organized auctions.

The remainder of this paper is structured as follows. Section 2 summarizes related

literature. Section 3 describes the market for purchasing new buses by public municipal

bus operators in Poland. In section 4, I introduce data and discuss the main patterns.

Section 5 introduces the theoretical model. Section 6 discusses estimation strategy to recover

primitives of the model. Section 7 presents estimation results. In section 8 I use the estimated

model to perform counterfactual exercises. Section 9 discusses potential policy solutions to

improve the efficiency of public procurement in presence of switching costs. Section 10

concludes.

2 Literature Review

This paper contributes to a few strands of literature, concerning buyer’s switching costs,

favoritism in auctions, scoring auctions, asymmetric auctions, and low bidder participation

in public procurement procedures.

Buyer’s switching costs are extensively studied in the literature (Klemperer, 1995). More

recent applications concern consumer heterogeneity and inertia (Hortaçsu, Madanizadeh,

and Puller, 2017; Miller, Petrin, Town, and Chernew, 2019), transaction costs (Luco, 2019),

and interactions between adverse selection, regulation and inertia (Polyakova, 2016). A
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common denominator of these papers is that they study switching costs in posted price envi-

ronments when agents have full discretion over their choices. Cabral and Greenstein (1990)

and Greenstein (1993) showed that government purchases may also be affected by switching

costs. To the best of my knowledge, this paper is the first study to provide a comprehensive

analysis of buyers’ switching costs within the auction environment by identifying trade-offs

and suggesting solutions to improve market efficiency.

Several authors studied applications of bid preference programs that were designed to

support domestic or local firms (McAfee and McMillan, 1989; Rosa, 2019), minority and

women-owned businesses (Ayres and Cramton, 1996; Mummalaneni, 2022), and small en-

trepreneurs (Krasnokutskaya and Seim, 2011). Even though in these papers bidder discrimi-

nation serves normative purposes, favoring high-cost potential bidders may lead to a decrease

in procurement costs (McAfee and McMillan, 1989; Corns and Schotter, 1999). My paper

shows that the use of bidder preference weights can be rationalized by a positive motive, to

avoid switching costs of introducing a new brand. I extend the analysis of buyer’s welfare in

the auction context, by showing that it does not only depend on procurement costs (prices)

but also on other types of buyer’s costs. I also generalize the standard approach in modeling

bidder favoritism by introducing randomness into the bidder preference weights chosen by

the auctioneer.

In papers studying favoritism in auctions, bidder discrimination is legally sanctioned by

the government. In turn, literature on scoring auctions (Che, 1993; Asker and Cantillon,

2008, 2010) focuses on quality aspects of the order. The sellers may receive a better score

(and hence have larger chances of winning) by offering higher quality products, which may

be costly for them. In principle, each potential bidder may ex-ante receive the highest score.

My paper builds a bridge between these two strands of literature by showing that when

open discrimination is not allowed, bid preference programs can be implemented implicitly

through scoring auctions. This is done by choosing scoring criteria that make it ex-ante

impossible for some potential bidders to receive the full score.

The existing papers studying bidder preference weights consider a setting in which there

are two groups of bidders—preferred and non-preferred. The bid preference rate is set by

the market regulator instead of the buyers, and remains the same for all bidders within
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a group. My application is substantially different, as buyers assign arbitrary weights to

potential bidders. This feature makes analysis more challenging. I show that the auction

with arbitrary patterns of bidder preference weights is equivalent to asymmetric auctions with

varying support of project completion cost distribution and use results of Lebrun (2006)

to show the existence and uniqueness of equilibrium in the bidding game and provide a

characterization of the equilibrium bidding. The characterization implies the possibility of

bid separation, which requires the adaption of numerical methods to solve for optimal bidding

(Hubbard and Kirkegaard, 2019). Bolotnyy and Vasserman (2021) account for one possible

bid bifurcation point. I adapt existing numerical methods of solving for equilibrium bidding

to account for arbitrary patterns of bid bifurcation that may occur due to arbitrary bidder

preference weights.

It is a well-documented fact that public procurement procedures often attract few bid-

ders. Over 24% of all auctions in EU observe a single bidder (Titl, 2021), and 45% of the

value of federal contracts has been assigned in a single bidder setting in the US(Kang and

Miller, 2022). Low participation is attributed to incumbent’s cost advantage (Iossa, Rey,

and Waterson, 2022), insufficient publicity and information about the contracts (Coviello

and Mariniello, 2014), corruption and political connections (Schoenherr, 2019; Baranek and

Titl, 2020; Decarolis, Fisman, Pinotti, and Vannutelli, 2020), natural monopoly. This paper

adds to this list by showing that low participation can also be attributed to buyers’ attempts

to avoid switching costs of introducing a new brand.

3 Procuring City Buses in Poland

This section describes the market environment in which Polish municipal bus operators

procure new buses and shows how they use the scoring auction format to implement bid

preference.

3.1 Market Environment

Poland is a relatively big market for municipal buses. At each point in time, there are

around 10 producers who supply operators with new buses. The exact numbers vary with
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producers’ entry and exit. The producers are usually well-established, regular participants

in the market. High producer’s entry costs, including obligatory vehicle certification and

setting up a nationwide system of affiliated workshops, limit significantly fringe bidding.

They sell their products to approximately 200 municipal operators, holding together a stock

of over 12,000 vehicles. Operators have buses of different ages and renew their fleet gradually

through small orders. The vast majority of bus operators are either owned or financed by

local authorities. That imposes a legal requirement of using public procurement for any

larger purchases, to ensure transparency of public fund spending. The procurement format

in use is the scoring auction, mandated by national and European EU procurement laws.

An auction is announced when the operator publishes an auction specification online,

which is a set of documents specifying order requirements. It also includes a definition

scoring rule, which is an algorithm that serves to rank submitted bids. The scoring rule

contains a list of criteria related to the order that are preferred but not required by the

operator. Each criterion assigns several points to a bid that satisfies it. For each bid, points

from different criteria are added up to a maximum of 100 points that an offer may receive.

The winner is a bidder whose offer gets the largest number of points.

After the announcement, potential bidders are given 1–2 months to prepare their bids.

During this time they are allowed to ask the operator questions regarding specifics of the

order. The dialog between potential bidders and the operator is published together with

the auction specification. Despite questions being asked anonymously, they often refer to

particular technological solutions which are specific to some producers. Next, bidders submit

their bids in secret. The bids are opened and ranked by an operator using the scoring rule.

Eventually, the winner is announced. The operator publishes auction results including the

total number of points assigned through the scoring rule for each of the bidders.

3.2 Scoring Auctions and Bidder Preference Weights

Bidder preference weights θ = {θj}j is a vector of positive numbers, one for each of the

potential bidders. Operators assign them to favor or discriminate against bidders. Bidder

preference weights affect the ranking of submitted bids. The winner is a bidder who submits
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the lowest value of a product of bid and the weight:

j wins ⇔ argmin θkbk
k

where bk is a price submitted by bidder k. Therefore, bidder preference weights give an

ex-ante price advantage to preferred bidders. It is no longer necessary that the winner is a

bidder who submits the lowest price. Bidder preference weights require normalization. For

convenience, I normalize the lowest θj – the weight assigned to the most preferred bidder –

to 1.

Polish bus operators are not legally allowed to openly discriminate against potential bid-

ders. However, Instead, the commonly used scoring auction format creates an opportunity to

implement bidder preference weights implicitly. A key element of the environment is the scor-

ing criteria used for bid evaluation. Scoring criteria can be divided into two groups: criteria

related to the bus and criteria related to the offer (but not directly to the offered bus itself).

The latter includes factors such as price2, post-sale services or shorter deadlines3. Hence,

any bidder can get the maximum number of points. The former contains criteria assigning

points for specific technological solutions offered by a producer. Producer’s technology rarely

can be updated in the short run to get more points in a given auction. Therefore, points

assigned in this category are fixed and behave as if they have been assigned to particular

bidders.

Bidder preference weights are constructed from the number of points assigned to partic-

ular potential bidders in criteria related to the bus and the total number of points in offer

criteria. Let y be the maximum number of points possible that could be assigned throughout

criteria related to the offer and ρj be the number of points assigned to the bidders within

bus criteria. Without loss of generality, assume ρ1 ≥ ρ2 ≥ · · · ≥ ρJ and normalize the bidder

2Price is the only criterion that appears in all auctions and is always of greatest importance with a
maximum of 68 points on average to be assigned. Auctions with price as the only criterion (equivalently 100
points for price) boil down to standard low-price auctions.

3If there are more offer-specific criteria besides price, the price can be easily adjusted to form a single
index reflecting also the value of other offer-specific criteria.
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preference weight for the most preferred bidder to one: θ1 = 1. Then:

θj =
y

y − ρ1 + ρj
, j ≥ 2 (1)

This formulation implies that bidder 1 wins if and only if b1 ≤ θj · bj for all j ≥ 2. Therefore

θj’s are bidder preference weights.

Appendix A describes a few frequently used scoring criteria related to bus technology and

provides a simple example of an auction including construction of the scoring rule, points

assignment to potential bidders and the relation between the number of points assigned in

technological criteria and bidder preference weights.

Bidder preference weights θ as formulated above have interpretation in terms of the

advantage of the most preferred bidder over the competitors. For example, if bidder j is

assigned θj, it means that the most preferred bidder may submit a bid that is up to θj

larger than j’s bids and still wins with j. We can also reformulate the weights to have an

interpretation in terms of j’s position. Let:

ωj =
(
1− 1

θj

)
· 100%

ωj describes the discount in percentage points that bidder j needs to make compared to

the most preferred bidder to win with them. This formulation may be more convenient in

the application. The significance of technology-related criteria never exceeds 50% of the

total score, which makes ωj ∈ [0, 100] for all j. ω’s are more intuitive in interpretation. In

the remainder of the paper, I use the term bidder preference weights to refer to ω’s, unless

otherwise explained.

4 Data

In this section, I discuss the data sources and provide a description of mechanisms governing

how Polish municipal bus operators renew their fleet of buses via auctions with bidder

preference weights.
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4.1 Sources

There are two main sources of data used in this paper: auction data and fleet data.

4.1.1 Auction Data

The auction data consists of the official procurement documents of 925 auctions by 189 public

bus operators organized between 2006 and 2022. I have collected the documents from various

sources, including a small consulting company operating in the industry; through direct

requests to the operators; or scraping internet resources such as Internet archive services

4 and document sharing platforms5. For each auction, I process the official documents

to retrieve order characteristics, scoring rules, as well as identities, bids, and total score

evaluation for participating producers.

The analysis of how the bid preference affects auction outcomes requires knowledge of

bidder preference weights assigned to all the potential bidders.

Auction characteristics define a set of potential bidders, that is, a list of producers that

offer products of demanded characteristics and therefore can participate in the auction. I

define the set of potential bidders liberally, taking into consideration demanded length and

drive of the bus and the year in which the auction is carried. The first two categories define

a broad type of bus. The last accounts for producers’ entry and exit. I identify potential

bidders by analyzing the offer of each producer in a given year based on participation in

auctions with a given set of requirements and official product brochures.

The official documents provide the total number of points assigned by the scoring rule

to participating bidders. This allows me to construct bidder preference weights among par-

ticipants and use them to solve for optimal bidding. However, to investigate how bidder

preference weights affect the bidder’s entry, I also need to know the number of points in

criteria related to the bus that would be assigned to nonparticipants had they entered an

auction. This requires knowledge of particular technological solutions used by producers. I

learned them from a range of sources, including official product brochures, results of other

auctions in which scoring criteria included a feature of interest and a given producer partici-

4Wayback Machine: web.archive.org
5docplayer.pl was particularly helpful.
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pated, internet galleries, and YouTube videos, and use them to impute the number of points

assigned by operators to the non-participating potential bidders.

Appendix B provides a more detailed description of data collection and processing and

discusses the quality of bidder preference weights imputation for non-participating potential

bidders.

4.1.2 Fleet Data

The operators’ fleets data comes from scraping a webpage http://phototrans.eu/, a photo

gallery that has evolved into a comprehensive database about vehicles owned by operators

all around the world, especially in Poland. For each bus-operator pair, dates of purchase

and scrapping (or re-selling), a list of previous owners, and some limited technical details

are available. The coverage of the fleet data is very good. In particular, it contains virtually

all of the buses listed in auction data.

4.2 Descriptive Analysis

Table (1) describes the main features of operators’ fleets and auctions they design. Operators

tend to unify their fleet, that is to limit the number of distinct vehicle brands in possession.

In total, operators drive buses of 60 different brands. However, an average individual fleet

contains vehicles of approximately four different brands, out of which only two are still offered

on the market. The distribution of brands within a fleet is not homogeneous. To investigate

it, I use the Herfindahl-Hirschman Index (HHI) defined as a sum of squared shares of brands

within a fleet. An average fleet HHI amounts to 0.44, suggesting presence of approximately

two leading brands. To see this, compare this result with HHI for a fleet with two brands of

equal share, which equals 0.5. These are likely the be the two brands that are still offered,

and so can expand their fleet share in consecutive purchases. In turn, market-level HHI

suggests presence of approximately five significant players.

Fleet unification is not perfect, meaning that an operator with a single-brand fleet is

rarely observed. Having a single-brand fleet is nearly impossible to achieve due to a few

factors. First, producers’ entry and exit from the market shape brand availability and lead
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to an increase in fleets’ diversity. Second, operators may buy second-hand buses from abroad,

that are not sold as brand new on the market6. Third, producers tend to manufacture only

a subset of possible bus types. Producer specialization is also an important source of fleet

diversity, especially among operators with more heterogeneous needs regarding bus type.

These considerations bring reference to Harold Zurcher, a superintendent of maintenance

at the Madison Metropolitan Bus Company in the seminal paper by Rust (1987). His fleet

contained 162 buses of three brands. One brand (Chance) consisted of only four vehicles

of special purpose, likely illustrating the impact of producer specialization. Another brand

(Grumman), with 15 buses, has been introduced in the last purchase within the observation

window. The remaining brand (GMC) was the main component of Zurcher’s fleet and had

been the only brand delivered across 1970s.

Table 1: Operators and their auctions – summary statistics.

count/mean st. deviation

Operators
# operators 189 –
fleet size 75.1 147.5
# of brands – total 60 –
# of brands – in a fleet 3.9 1.8
# of brands – in a fleet, active bidders 2.2 1.3
market fleet HHI 0.21 0.05
operator’s fleet HHI 0.44 0.26

Auctions
# auctions 925 –
order frequency – years 1.7 2.1
order size – % of the fleet 13.5 17.0
# potential bidders 3.5 1.4
# actual bidders 1.4 0.9

Bidder Preference Weights ω
1st most preferred bidder 0 0
2nd most preferred bidder 5.5 8.0
3rd most preferred bidder 10.3 10.5
incumbents 3.7 7.2
incumbent who won last auction 2.1 5.6
non-incumbents 9.2 11.4
participants 2.1 5.1
non-participants 10.3 11.4

6This used to be particularly prevalent among Polish municipal bus operators when funding sources were
scarce, up until the second half of the 2000s . In the case of second-hand purchases, nearly immediate
availability and low price of these buses were usually the main factors leading to purchases.
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Operators tend to make frequent but small purchases. They renew 13.5% of their fleet

once in 1.7 years. This reflects purchase patterns from the past as well as the current

availability of funding. Neither purchasing format (auction) nor small but frequent purchases

seem to be helpful tools in achieving fleet unification. Despite this fact, operators manage

to keep the number of distinct brands low. Bidder preference weights are key to solving this

apparent puzzle.

Operators use bidder preference weights to signal who they want to win. Bidder pref-

erence weights in table 1 are expressed in ω formulation; that is, they describe how much

discount a less preferred bidder has to offer in comparison to the most preferred bidder to

win with them. The weight for the most preferred bidder is by definition normalized to

0. An average bidder preference weight assigned to the second-most-preferred bidder is 5.5.

That means they need to submit a bid 5.5% lower than a bid by the most preferred bidder

to win with them. Interpretation of these numbers is conditional on the fact that the most

preferred bidder participates in the bidding.

Operators favor producers that are already in their fleet. An average incumbent has to

submit a bid lower by 3.7% than the most preferred bidder to win. Non-incumbents need

on average to offer a 9.2% price discount7. Data reveal that an average incumbent is not the

most preferred bidder. This observation may be a result of various factors. Some operators

may dislike products of particular incumbents due to past bad experiences. Others may

have discovered other brands that better fit their needs. It can also be optimal to maintain a

roughly equal share of a few brands to insure against faulty products and be able to attract

more bidders in auctions. All of these are consistent with the more preferential treatment

assigned to the most recent winner (necessary discount of only 2.1%), which is likely to

describe the current operator’s preferences most closely. Bus operators tend to continue

buying from the same sources. Similarly, Harold Zurcher’s company was buying exclusively

from GMC across the 1970s.

7In an ongoing project, I study the co-evolution of bidder preference weights and operator’s fleet. I
provide formal evidence on the fact that producers whose products have been introduced to the fleet enjoy
more favorable treatment in consecutive auctions, whereas bidder preference weights assigned to existing
incumbents remain unchanged. I also study changes in the criteria chosen by operators constructing the
scoring rule in response to changes in the fleet.
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Bidders’ auction participation heavily depends on bidder preference weights. A typical

participant is either the most preferred or nearly-most-preferred bidder. The average bid

discount required to win among the entrants is 2.1%. In turn, non-participants would have

needed to offer a discount of more than 10%.

Bidder preference weights affect the producer’s chance of winning in two ways. They

force under-preferred bidders to bid lower if they decide to bid. However, if participation

in an auction is costly, the markup margin may not be large enough to accommodate an

inferior bidding position resulting from bidder preference weights. This is why a typical

auction could attract more than three bidders, yet two of them do not decide to submit a

bid.

5 Theoretical Model

Motivated by the results obtained in the previous section, I develop a model of interactions

between a single buyer (bus operator) purchasing differentiated durable goods (buses) and

sellers (bus producers) selling them through auctions with bidder preference weights. The

model encompasses three stages. First, the buyer chooses how much to favor or discriminate

against potential bidders. Second, potential bidders decide whether to pay an entry cost

and participate in the auction. Third, actual bidders—potential bidders who decided to

participate in bidding and paid their entry costs, submit bids.

Assume all agents are risk-neutral. Denote the set of potential bidders by JP . Collect

indices of potential bidders who decided to enter in a set JA ⊂ JP .

5.1 Bid Preference

I distinguish between ex-ante and ex-post bidder preference weights. Ex-ante bidder pref-

erence weights, denoted by θ̃k : k ∈ JP , are chosen by the buyer in the first stage of the

game and announced to potential bidders before the entry stage. They serve as a signal of

how much favoritism to expect at the bidding stage. Ex-post bidder preference weights serve

to rank submitted bids. They are realizations of a random variable, drawn independently

across actual bidders after entry but before bidding. They follow a distribution that depends
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on ex-ante bidder preference weights:

θk ∼ F θ
k (·|θ̃k), k ∈ JA

This model is a generalization of the standard approach in the literature on auctions with

bidder preference weights with endogenous entry, in which θk is drawn from a degenerate

distribution defined at θ̃k.

Ex-post bidder preference weights θk summarize bid credit that bidder k receives com-

pared to their competitors. Denote the submitted bids by bk : k ∈ JA. The contract is

granted to:

j = argmin
k∈JA

θkbk

Lower values of θj compared to the opponents allow actual bidder j to win despite submitting

a higher bid. Note that ex-post bidder preference weights are unique up to normalization.

Without loss of generality, I normalize the weight of the most preferred bidder to 1.

5.2 Timeline

Figure (1) summarizes timeline of the game and information available for the agents at

decision time. Below I describe the three stages in reverse order and discuss modeling

choices.

Figure 1: Timeline of the game.

Stage 1: Auction Design

operator chooses
ex-ante preference weights

Stage 2: Entry

potential bidders decide
whether to pay entry cost & participate

Stage 3: Bidding

actual bidders submit bids:
IPV bidding game

Public Information at the Decision Time:

•operator’s fleet F0

•potential bidders
•potential bidders

•ex-ante preference weights

•actual bidders
•ex-post preference weights

Agents’ Private Information at the Decision Time:

•entry cost •project cost
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5.3 Stage 3: Bidding

As a result of the entry stage, a subset of potential bidders have paid their entry costs

and become actual bidders, JA ⊂ JP . At the beginning of the bidding stage, three pieces

of information are revealed to the actual bidders. First, they learn the identities of their

competitors. Second, each actual bidder draws a realization of a project completion cost:

ck ∼ F c
k (·) : [ck, ck] → [0, 1], k ∈ JA

where F c
k is a continuous cumulative distribution function with associated density f c

k that is

strictly positive on the entire support, and such that 1−Fk

fk
is strictly decreasing. In addition,

∩k∈JA [ck, ck] ̸= ∅ so that no bidder is sure to lose any auction. Project completion cost

draws are private information of each actual bidder. Functional forms of cost distributions

are known to all players. Third, a vector of ex-post bidder preference weights θ = {θk}k∈JA

is drawn and announced publicly.

A Bayesian-Nash equilibrium of the bidding game is a set of optimal bidding functions

βj(·):

βj : [cj, cj] → [bj, bj], j ∈ JA

such that for each potential bidder j, βj(cj) is a best response (at a project completion

cost draw cj) to actions of other players, assuming they follow their equilibrium strategies.

Equilibrium depends also on the composition of actual bidders JA and a vector of ex-post

bidder preference weights θ, but since they remain constant at the bidding stage I skip them

for notational convenience. I consider equilibria in which bidders bid at least their cost.

In anticipation of the fact that the unique equilibrium bidding functions βj(c) are strictly

increasing in c, I define also an inverse bidding function γj = β−1
j :

γj : [bj, bj] → [cj, cj], j ∈ JA

such that cj = γj(bj).
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Each actual bidder maximizes expected profits:

πj(b; cj, θ, J
A) =

(
b− cj

)
· Prob

[
j wins

∣∣b; cj, θ, JA
]

=
(
b− cj

)
·
∏
k∈JA

k ̸=j

[
1− F c

k

(
γk(

θj
θk
b)
)]
, j ∈ JA

The first order conditions:

γ′
j(b) =

1− F c
j

(
γj(b)

)
f c
j

(
γj(b)

) [ 1

|JA| − 1

∑
k∈JA

1

b− θk
θj
γk(b

θj
θk
)
− 1

b− γj(b)

]
, j ∈ JA (2)

define a set of ordinary differential equations in the inverses of optimal bidding functions.

This set together with appropriate boundary conditions characterizes equilibrium of the

bidding game.

There exists a unique equilibrium of the bidding game, in which the optimal bidding

functions are strictly increasing in project completion cost. The strategy of proving this

claim relies on showing that each auction with bidder preference weights has a respective

auction without bidder preference weights but an altered cost structure. In particular, there

is a one-to-one mapping between equilibrium bidding in both games. Then we can invoke

the result of Lebrun (2006), who proves the existence and uniqueness of equilibrium in a

first-price independent values auction with general cost structure89. I describe this idea in

detail in appendix C.

8Classic results of Maskin and Riley (2000, 2003) are not sufficient in this case, since they assume common
lower extremity of the support of project completion cost distributions. The mapping from auctions with
bidder preference weights into alternative auctions without them shifts the support of project completion
cost distributions. Therefore, even assuming common support of project completion costs across bidders
would not be enough to rely on Maskin and Riley’s work.

9An alternative way of proving existence would be to show that auctions in my setting satisfy conditions
in Reny and Zamir (2004). However, the way of proving proposition 1 suggested in this paper provides
a more intuitive way to understand the mechanisms behind existence in this particular case. By focusing
on the specific problem, it also delivers characterization of the boundary conditions which is important for
empirical work.
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5.4 Stage 2: Entry

In the second stage, JP potential bidders decide whether to pay an entry cost and participate

in the auction. They take into account a vector of ex-ante bidder preference weights θ̃ chosen

by the buyer at the first stage. In addition, each potential bidder draws a realization of an

entry cost ej:

ej ∼ F e
j (·) : D → [0, 1]

where F e
j is a continuous cumulative distribution function and D is a compact subset of R.

Potential bidders know their entry cost realization as well as distributions of their competi-

tors’ entry costs.

An equilibrium of the entry stage is a set of optimal entry rules δj : D → {0, 1} mapping

entry costs into a binary decision dj of whether or not to enter. It depends also on the set

of potential bidders JP and a vector of ex-ante bidder preference weights θ̃, but since they

are constant within an auction I skip them for notational convenience.

Equilibrium strategy takes the form of a cut-off rule in which the potential bidders enter

if:

dj = 1 ⇔ ej ≤ πj

where πj ≡ πj(θ̃, J
P ) denotes the expected payoff from bidding given the vector of ex-ante

bidder preference weights θ̃ and set of potential bidders JP . The cut-off rule implies that the

probability that j enters the auction is pj ≡ F e
j

(
πj(θ̃, J

P )
)
. At the same time, the expected

profit is given by:

πj =
∑

JA⊂JP

∏
k∈JA

k ̸=j

pk(πk)
∏

k∈JP \JA

k ̸=j

(
1− pk(πk)

) ∫
θ

∫
cj

πj(cj, θ, J
A)dF c

j (cj)dF
θ(θ|θ̃) (3)

≡Ψj(π), j ∈ JP (4)

where π = {πk}k∈JP is a profile of expected profits from participation. Since sellers would

enter only if their payoff is nonnegative, this is also a profile of entry thresholds. Therefore,

the entry stage equilibrium is characterized by a fixed point equation. Given assumptions
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of the model, Brouwer’s fixed point theorem guarantees the existence of equilibrium in the

entry game. However, equilibrium may not be unique.

5.5 Stage 1: Auction Design

The buyer enters their decision stage with a current fleet of buses F0 that reflects the history

of past purchases. If a potential bidder j = 1, . . . , NP wins the auction with price bj, the

auctioneer receives a payoff Uj(F1|j, bj), where F1|j denotes the updated fleet after j’s win.

Payoff reflects buyer’s individual preferences towards particular producers and switching

costs related to introducing a new brand into the fleet. Consistently with patterns observed

in the data, I allow for the possibility that an auction has no winner. In this case, the buyer

receives a payoff U0(F0). Assume uk is a continuous function for all k = 0, 1, . . . .

Let bj(θ̃) be the expected winning bid by potential bidder j if they decide to partici-

pate, conditional on ex-ante vector of bidder preference weights θ̃. Based on the current

fleet, switching costs, and their preferences, the buyer chooses a vector of an ex-ante bidder

preference weights θ̃ ≡ {θ̃k}k∈JP to maximize their expected utility:

θ̃ = argmax
τ∈Θ̃

∑
k∈JP

Prob
[
k wins

∣∣τ] · Uk

(
F1|k, bk(τ)

)
Given the assumption of the model, Prob

[
k wins

∣∣τ] is a continuous function. Therefore

Θ̃ being a closed set is sufficient for existence.

5.6 Discussion over Modeling Choices and Additional Assump-

tions

5.6.1 Assumptions On Auction Game

Entry and bidding stages build on the approach developed by Krasnokutskaya and Seim

(2011) and Athey, Levin, and Seira (2011). That encompasses three major assumptions.

First, the project completion cost is independent of entry cost and is revealed only for

bidders who have decided to participate in the bidding and paid their entry cost, as in

Levin and Smith (1994).This assumption is standard in the empirical literature and allows
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me to separate entry and bidding. It greatly reduces the computational burden, which

is particularly important in my application given arbitrary patterns of bidder preference

weights.

Second, actual bidders know the identities of their opponents while submitting their bids.

The market is small, with less than 10 regular bidders who repeatedly participate in auctions.

It is likely that producers are well informed about each other and so can accurately predict the

identities of competitors. Moreover, potential bidders often engage in a public dialog with the

operator regarding order characteristics in the period between auction announcement and the

bid submission deadline. It frequently concerns specific technological solutions. Therefore,

even though the identity of producers asking questions is kept secret, it is straightforward to

infer who expresses interest in the bidding and how likely their entry is given the operator’s

response to their questions.

Third, entry and project completion cost realizations are bidders’ private knowledge, and

are drawn independently across bidders from publicly known distributions F e
j (·) and F c

j (·)

respectively. This assumption places my auction framework within independent private value

paradigm.Entry costs are related to preparing the offer and may be a significant part of the

final bids10. In my application, they refer to processing hundreds of pages of specifications,

customizing products to fit the specification, making necessary arrangements with poten-

tial contractors, and properly quoting the product. Idiosyncratic variation in entry costs

is attributed to differences in individual cost of labor (necessary to prepare an offer) or re-

lation with the financial sector (proofs of financial capacity to realize the order). In turn,

project completion costs concern all the costs needed to physically produce and deliver the

buses. Order characteristics are specified in a detailed way, so bidders can predict their

costs accurately. Existing variation in bids is therefore associated with random variation

in project completion costs. This variation comes from differences in input prices faced by

firms, contractual arrangements with contractors, and opportunity costs.

10Li and Zheng (2009) find that on average they amount to 8% of the winning bid in the highway mowing
auctions, Athey, Coey, and Levin (2013) report average entry costs to be approximately 9% of the average
bid in case of timber sales.
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5.6.2 Myopic Agents

Agents take myopic decisions in each auction. This assumption is equivalent to setting a

discount factor in a dynamic game to zero. Although one may argue it rules out some possibly

interesting inter-temporal strategies, it seems to be an accurate description of the market

of city buses in Poland. Market conditions evolve in a non-stationary way, which makes it

difficult for agents to form rational expectations. Considering producers who participated in

at least 10 auctions, four producers exited and five producers entered throughout the sample

window. Moreover, technology is developing fast. In the early 2020s, electric buses accounted

for most of the sales, as they received priority in dividing government funds, and nationwide

legislation required operators to increase the fraction of zero-emission buses in their fleets.

This reality would sound unlikely in the early 2010s when ON-drive buses dominated the

market and electric-drive buses were still in a conceptual phase of development. Uncertainty

increases as new technology stimulates entry, and incumbent producers adopt it at a different

pace. A non-stationary environment makes it also difficult for the producers to form rational

expectations, particularly in predicting future demand and competitors.

5.6.3 Randomness in Bidder Preference Weights

Distinguishing between bidder preference weights chosen by the operator and used to rank

bids at the bidding stage is motivated by the specific way in which bus operators choose

to favor or discriminate against bidders. They assign bidder preference weights to potential

bidders implicitly, through scoring rule criteria related to technological solutions. Many of

these technological solutions are naturally fixed, for example, construction materials. Others

may be subject to some minor innovations. For instance, a producer may introduce a new

type of higher-capacity battery for electric drive. Sometimes the exact number of points a

bidder would get is hard to predict. Gas consumption depends on the total weight of the

bus which in turn depends on a range of additional factors including passenger information

system, air conditioning system, etc. Moreover, some scoring criteria assign points to a

bidder depending on the values of other offers. To account for these factors, I think of ex-
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post bidder preference weights as random variables that depend on ex-ante bidder preference

weights in a stochastic way.

6 Estimation Strategy

In this section, I adapt the theoretical model to the empirical application. I outline an

estimation procedure that allows me to uncover model primitives from the data.

6.1 Assumptions of the Empirical Model

The market is populated by operators (buyers indexed by i) maintaining and renewing their

fleet of buses, and producers (sellers indexed by j) selling vehicles to operators through

procurement auctions with bidder preference weights.

6.1.1 Auction Heterogeneity

Auction t is characterized by contract characteristics (xt, ut) announced by an operator at

the beginning of an auction. xt contains a range of contract characteristics that are observed

by an econometrician. It determines the set of potential bidders JP
t containing producers

who can fulfill this particular order. ut summarizes part of contract characteristics observed

by the operator and producers but unobserved by an econometrician. (xt, ut) affect monetary

value of the order and its profitability to the bidders.

I assume that both xt and ut result from needs of an operator that are exogenous in

my model. In particular, they are independent of the set of potential bidders JP
t ; that is,

operators do not select features of the order to exclude producers from a procurement. This

assumption is consistent with the data, in which the type of buses ordered is usually related

to the needs of a specific operator and remains roughly constant across auctions.

Operators announce their cost estimate b∗0t after the bids are submitted and before they

are opened. Bid submitted by actual bidder j is denoted by b∗jt.
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6.1.2 Bidder Symmetry

Bidders are symmetric in terms of entry cost distributions (conditionally on a vector of

observed factors facilitating entry), project completion costs, and ex-post bidder preference

weights distributions:

F e
j (·) ≡ F e(·|Zijt), F c

j (·) ≡ F c(·), F θ
j (·|θ̃j) ≡ F θ(·|θ̃j), ∀j

The symmetry assumptions are motivated by the market specifics. Requirements regard-

ing entry and bid submissions are common to all bidders and so entry costs are not likely to

vary systematically among bidders, up to some observed characteristics. Project completion

costs are related to the production process. Despite differences in the details of technological

solutions, contemporaneous buses are fairly standardized. That includes an arrangement of

important components as well as standards of equipment. Therefore, the variation in project

completion costs, resulting from individual arrangements of producers and input prices they

face, is not likely to be systematically different across bidders. Finally, the last equation rules

out a situation in which it is easier for a particular producer to make a short time adjustment

in their technology to score more points in the auction. This assumption is consistent with

observed data patterns.

6.1.3 Single Bidder Auctions

The majority of auctions in my data observe only one actual bidder. Single-bidder auctions

pose a challenge in the low-price auction literature. Theory predicts that the single bidder

bids infinity if there is no competitive pressure from other participants. This is not a feature

of the data. It may be optimal for sellers to keep bids relatively low despite being a single

bidder because setting unreasonably high prices may work a negative signal send to the

operators on the market, discouraging them from setting up favorable bidder preference

weights in auctions. A way to rationalize finite bids in single-bidder auctions is to introduce

a binding reserve price. I follow the approach of Li and Zheng (2009) by assuming that

it is a common belief among potential bidders that if they turn out to be a single bidder,

they compete against the auctioneer drawing a project completion cost realization from
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distribution FB(·). Auctioneer’s bids are effectively a secret reserve price, that is, a reserve

price that is not revealed before bidding.

A proper choice of FB(·) is crucial for rationalizing single-seller bids and poses a challenge

in a setting with bidder preference weights. Assuming that single bidders compete against

the auctioneer who draws from the same cost distribution (as in Li and Zheng (2009))

would lead to a situation in which prices offered by single bidders are systematically lower

than prices offered by the most-preferred bidders facing low pressure from participating but

discriminated competitors. To deal with this issue, I invoke results of Guerre, Perrigne, and

Vuong (2000) stating that the distribution of costs can be uniquely derived from distribution

of bids. I assume that the auctioneer draws their costs from a distribution generated by the

distribution of bids submitted by under-preferred bidders GB(·). The rationale behind this

modeling choice is that discriminatory bidder preference weights assigned by a buyer are

an indication of the acceptable increase in price in case the most preferred bidder wins. In

particular, I choose GB(·) to be a distribution of bids submitted by bidders having bidder

preference weights higher or equal to 5.5, which is the average bidder preference weight

assigned to the second most preferred bidder in my data. This approach allows me to obtain

realistic markups also in single bidder auctions11.

6.1.4 Unobserved Heterogeneity

Unobserved auction heterogeneity ut ≤ 0 is a uni-dimensional index distributed according to

a continuous cumulative distribution function F u(·) with bounded support and non-vanishing

density. It is drawn independently from observed auction characteristics, the set of poten-

tial bidders, entry and project completion costs, and ex-ante and ex-post bidder preference

weights. Unobserved heterogeneity allows me to explain the correlation between bids within

an auction in the independent private value setting.

11In the bus application, there is no directly revealed reserve price. However, approximately 7% of auctions
have been canceled because the best bid in terms of the scoring rule was too high compared to the operator’s
financial capability. I experimented with rationalizing bids in single-bidder auctions with a distribution of
secret reserve prices estimated from data on canceled auctions. This approach failed to generate reasonable
markups because the probability of being rejected for the bid being too high is relatively low in the data.
The reason is that secret reserve price defined this way does not create as much pressure on a single bidder
as the presence of another player would do.
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6.1.5 Separability

Project completion cost c∗jt of an actual bidder j is multiplicatively separable in observed

and unobserved auction heterogeneity and private information of the bidder:

c∗jt = exp{Ξ(xt)} · ut · cjt

where Ξ(·) is a function known up to a set of parameters. I assume that observed hetero-

geneity is linear in order characteristics: Ξ(xt) = x′
tξ.

Project completion cost separability implies that optimal bidding is also multiplicatively

separable (Haile, Hong, and Shum, 2003; Krasnokutskaya, 2011):

b∗jt = exp{Ξ(xt)} · ut · bjt

where bjt is the component related to strategic bidding. It is a function of a private project

completion cost draw cjt, hence also a random variable.

The operator’s cost estimate is also separable and can be expressed as:

b∗0t = exp{Ξ(xt)} · ut · b0t

where b0t is a random term related to funds availability, drawn independently across auctions

according to a distribution function F0(·). b0t is independent from ut, mean independent from

xt, ex-ante and ex-post bidder preference weights, and E[log b0t] = 0.

Multiplicative separability simplifies computation of the equilibrium bidding function

across auctions. In particular, β(c, u,Ξ) = Ξ · u · β(c, 1, 1) for any u and Ξ.

6.1.6 Ex-Ante Bidder Preference Weights

Ex-ante bidder preference weights take three distinct values: θ̃jt ∈ {0, 1, 2}. θ̃jt = 0 denotes

the most preferred bidders, who are sure to keep the most preferred bidder position in the

bidding if they decide to participate. θ̃jt = 1 refers to bidders that are not strictly preferred,
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but may expect low realizations of ex-post bidder preference weights. Eventually, θ̃jt = 2 is

a signal that an operator is not really interested in purchasing products from j.

The intuition behind this discretization is as follows. Operators tend to specify precisely

who is their producer of choice. They likely know preferred producers’ technological solu-

tions and construct scoring rule criteria accordingly. They may also decide not to use any

discriminatory criteria. In both situations, the most preferred producers according to ex-ante

bidder preference weight would remain the most preferred bidders according to an ex-post

weight if they decide to participate in the auction. Less preferred bidders may share some

solutions with the most preferred, but usually not all of them. Hence, their score would vary

but may get close to the most preferred bidders depending on the construction of the scoring

rule. Lastly, operators are also likely to know which technical solutions – and producers –

they are not willing to accommodate, which results in very non-favorable bidder preference

weights.

As a result, F θ(·|θ̃jt = 0) is a probability distribution degenerated at 0. F θ(·|θ̃jt = 1) and

F θ(·|θ̃jt = 2) are continuous distributions and the latter first-order stochastically dominates

the former. I parametrize the conditional distributions as Gamma distributions:

F θ(·|θ̃jt = c) ∼ Γ(σ1c, σ2c), c ∈ {1, 2}

where σ1· and σ2· are shape and scale parameters respectively.

6.1.7 Entry Probabilities

Similarly to Athey, Levin, and Seira (2011); Athey, Coey, and Levin (2013), I assume a

parametric model for entry. The probability that a potential bidder will enter the auction t

is defined as:

P
[
j participates in t|zjt

]
=

exp{zjtη}
1 + exp{zjtη}

where zjt is a vector of covariates and η is a vector of parameters.

Parametric specification reduces computation burden, especially in the presence of un-

observed auction heterogeneity. However, it rules out potential multiplicity of equilibria.

Therefore, I assume that all observations in the data are generated by the same equilibrium.
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6.1.8 Operator’s Payoffs

The operator chooses an ex-ante bidder preference weight for each potential bidder. It takes

one of three possible values θ̃j ∈ {0, 1, 2} denoting most preferred bidders, less preferred

bidders, and non-preferred bidders. Let θ̃ denote the vector of ex-ante bidder preference

weights and Θ̃ the set of possible choices. Given the relative nature of the weights, there is

at least one most preferred bidder in each auction. Hence, the operator chooses a vector of

ex-ante bidder preference weights from |JP | · |JP | · 3|JP |−1 possible choices. For example, a

typical auction with three potential bidders generates 3 · 32 = 27 possible choices.

If potential bidder j wins auction t, the operator receives a stream of utility:

ζbbjt + ζ ′ffjt

where bj is the price paid by the operator and fjt contains variables describing the operator’s

fleet given j’s win. It may also be the case that no bidder wins the auction. In such a case,

the operator receives a normalized payoff U0 = 0.

The winner is determined stochastically through the auction mechanism, which depends

on the vector of ex-ante bidder preference weights θ̃. Operator’s expected stream of utility

related to updating their fleet given a choice of θ̃ ∈ Θ̃ is:

∑
j∈JP

ϱj(θ̃) ·
(
ζbb̂j(θ̃) + ζ ′ffjt

)
(5)

where ϱj(θ̃) is the probability that potential bidder j wins given θ̃, and b̂j(θ̃) is the expected

price submitted by j given θ̃ and the fact that j wins.

Eventually, I assume that each choice of θ̃ is associated with a random shock εθ̃t drawn

independently and identically across alternatives and auctions from the extreme value type

1 distribution.
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The total payoff from choosing θ̃ is:

πO
t (θ̃) =

∑
j∈JP

ϱj(θ̃) ·
(
ζbb̂j(θ̃) + ζ ′ffjt

)
+ εθ̃t

≡ ζ ′wt(θ̃) + εt(θ̃) (6)

where the last line uses the fact that operator’s payoff is a linear function of parameters.

Specifically, ζ =
{
ζb, ζf

}
and wt(θ̃) =

{∑
j∈JP ϱj(θ̃)b̂j(θ̃),

∑
j∈JP ϱj(θ̃)fjt

}
.

Operator chooses θ̃ if it delivers the highest utility:

θ̃ = argmax
θ̃′∈Θ̃

ζ ′wt(θ̃
′) + εt(θ̃

′)

The probability that operator i chooses θ̃ ∈ Θ̃t in auction t can be written as:

P [θ̃t = θ̃|ζ] = exp{ζ ′wt(θ̃)}∑
θ̃′∈Θ̃ exp{ζ ′wt(θ̃′)}

6.2 Estimation Strategy

Empirical model assumptions lead to the following list of primitives to be estimated:

• parameters of observed auction level heterogeneity ξ

• distribution of unobserved auction level heterogeneity F u(·)

• distribution of project completion costs F c(·)

• parameters σ of conditional distribution of ex-post bidder preference weights F θ(·|θ̃)

• parameters η of entry probabilities

• parameters ζ of operators’ payoff

Observed and unobserved auction heterogeneity as well as project completion cost are

primitives of the bidding stage. Conditional distributions of ex-ante bidder preference weights

and participation probabilities are primitives of the entry stage and allow me to recover entry

costs. The last part refers to stage 1, the operator’s problem. The remainder of this section

describes how each of the primitives is estimated from the data.
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6.2.1 Observed Heterogeneity

In the first step, I separate observed auction level heterogeneity from the bids by applying

bid homogenization (Haile, Hong, and Shum, 2003). Observed heterogeneity is linear in

order characteristics: Ξ(xt) = x′
tξ. The multiplicative structure of bids allows me to write

them as:

log b∗jt = x′
tξ + log ut + log bjt, j = 0, 1, . . . (7)

where ξ is a vector of parameters.

xt includes year, drive, length, size of the order, leasing indicators, additional items

required in the order (e.g., electric battery chargers), delivery deadline, and length of war-

ranties required. In addition, operators tend to have their standards regarding additional

equipment, like types of driver’s compartment, passenger information systems or air condi-

tioning. I include operator’s fixed effects for operators with a total of 10 or more observations

available. I add operator size to the specification as a proxy for financial capabilities and

an indicator for European Funds. The remaining term ut summarizes factors unaccounted

for at the auction level, including deviations from the operator’s standard requirements, or

prestige gains to the producer of selling to large and recognized operators.

I estimate the parameters of the equation (7) taking into account potential endogene-

ity resulting from the existence of unobserved fixed effect log ut at the auction level. The

estimation approach is described in detail in appendix E.

6.2.2 Unobserved Heterogeneity & Project Completion Costs

I apply non-parametric deconvolution methods (Kotlarski, 1966; Li and Vuong, 1998; Kras-

nokutskaya, 2011) to homogenized bids bu = log b∗jt − x′
tξ to estimate distributions of un-

observed heterogeneity F u(·) and individual project completion costs F c(·). This approach

relieves me of necessity of imposing functional form assumptions on these distributions. It

also provides estimates for bounds of the support of obtained distributions, allowing me

to closely follow the theoretical model which assumes bounded support for the individual

project completion cost components.
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The estimation proceeds in two steps. First, I estimate the distributions of unobserved

heterogeneity F u(·), strategic components of bids in single bidder auctions G1(·), and strate-

gic bid components submitted by bidders whose bidder preference weight is above 5.5 GB(·).

The latter serves as an approximation of auctioneer strategies rationalizing bidding in single-

bidder auctions. In the second step, I follow insight of Guerre, Perrigne, and Vuong (2000)

to derive the distribution of individual project completion costs using estimated strategic

bid distributions. I focus exclusively on single bidder auctions, as in this case the bid dis-

tribution is not affected by participation patterns and bidder preference weights. Further

explanations and technical details regarding the estimation method in this subsection can

be found in appendix F.

6.2.3 Ex-Ante Bidder Preference Weights

The most preferred bidders in terms of ex-ante bidder preference weights are sure to enjoy

the most preferred position also at the bidding. Hence, whenever ex-post bidder preference

weight indicates the most preferred position θjt = 0, it follows that the ex-ante bidder

preference weight does the same: θ̃jt = 0. If θjt > 0, it could be that θ̃jt = 1 or θ̃jt =

2. Therefore, observations of θjt are random draws from a mixture of distributions with

two components F θ(·|θ̃jt = 1) and F θ(·|θ̃jt = 2) and mixing weights Prob[θ̃jt = 1|zθjt] and

Prob[θ̃jt = 2|zθjt] respectively. Mixing weights denote probability of observing θjt given that

it has been drawn from F θ(·|θ̃jt = 1) and F θ(·|θ̃jt = 2) respectively. They may depend on a

vector of exogenous covariates zθjt.

Since the draws of ex-post bidder preference weights are mutually independent, the prob-

lem boils down to a standard latent class model with two latent classes. Observation jt’s

contribution to the likelihood can be expressed as:

ℓ(θjt) =
2∑

c=1

Prob
[
θ̃jt = c

∣∣∣zθjt] · f θ
j (θjt|θ̃jt = c)
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By assumption, f θ
j (θjt|θ̃jt = c) are densities of Gamma distribution parametrized by

(σ1c, σ2c) for c ∈ {1, 2}. I also assume that the mixing probabilities can be written as:

Prob[θ̃jt = 1|zθjt] =
exp{zθjtσ3}

1 + exp{zθjtσ3}
, Prob[θ̃jt = 2|zθjt] =

1

1 + exp{zθjtσ3}

where σ3 is a vector of parameters. I estimate σ = {σ1, σ2, σ3} using maximum likelihood

methods.

zθjt’s are not necessary to identify the conditional distributions of ex-post bidder preference

weights, but help to predict which observations in the data come from which conditional

distribution. In my application, zθjt’s contain a series of variables describing j’s contribution

to the operator’s fleet, including indicators of being in the fleet, past wins, past purchases

as second-hand vehicles, and overall discrimination potential of an auction. I impute the

ex-ante bidder preference weights using estimated mixing weights:

θ̃jt = argmax
c∈{1,2}

Prob[θ̃jt = c|zθjt]

Without additional variation in zθjt, the estimated mixing probabilities would be constant

across the sample, making it difficult to impute ex-ante bidder preference weights.

6.2.4 Participation Probabilities

Participation probabilities are expressed as:

P
[
j participates in t|zjt; ζ

]
≡ P

[
djt = 1|zjt, ut; ζ

]
=

exp{zjtζ}
1 + exp{zjtζ}

where zjt is a vector of covariates, ζ is a vector of parameters.We expect that auction prof-

itability as expressed by auction level heterogeneity Ξ(xt) · ut may affect entry, hence it is

a part of zjt. The auction heterogeneity term creates a challenge in estimation, as it is

observed by potential bidders deciding whether to participate in an auction, but is typically

unobserved by an econometrician.

Fortunately, the data contains useful information regarding ut. Its distribution is recov-

ered in one of the previous steps. Moreover, homogenized bids contain repeated (but noisy)
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measurements on realizations of the unobserved auction heterogeneity. Taking advantage of

the fact that the support of all the components of homogenized bids is bounded and bounds

have already been estimated, I derive bounds for each realization of ut in the sample. Let

{u, u}, {b, b} and {b0, b0} denote bounds of the support of unobserved heterogeneity u, strate-

gic bid components b and operator’s price estimate b0. For each submitted homogenized bid

bujt we can retrieve bounds for the realization of ut:

ut ∈ [max{bujt − b, u},min{bujt − b, u}], j ∈ JA
t

Analogously, for the homogenized operator’s cost estimate it follows that:

ut ∈ [max{bu0t − b0, u},min{bu0t − b0, u}]

Intersecting all these intervals for repeated homogenized measurements within an auction

returns the interval in which unknown realization of ut falls in. Denote it by [ut, ut]. Using

this information, for each auction t I consider the conditional distributions of u, given the

u ∈ [ut, ut]:

F u
(
u
∣∣u ∈ [ut, ut]

)
=

F u(u)− F u(ut)

F u(ut)− F u(ut)
≡ F u

t (u)

with associated density fu
t (u) =

∂Fu
t (u)

∂u
(u).

Integrating over unobserved heterogeneity and making use of the fact that entry costs

are independent across auctions and bidders, the log-likelihood function can be expressed as:

ℓ(ζ) =
∑
t

∑
j

1
[
djt = 1

]
log

(∫
u

P
[
djt = 1

∣∣zjt, ut; ζ
]
dF u

t (u)
)

+1
[
djt = 0

]
log

(∫
u

(
1− P

[
djt = 1

∣∣zjt, ut; ζ
])
dF u

t (u)
)

which is maximized over ζ to obtain the desired parameters. The covariates zjt include

variables relevant for entry decision, including the observed auction heterogeneity Ξt, own

ex-ante bidder preference weight, and ex-ante bidder preference weights of other potential

bidders. I also include a dummy for incumbent status to investigate potential incumbent

advantage.
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6.2.5 Entry Costs

Entry is characterized by a threshold rule. A potential bidder decides to participate in an

auction if the expected payoff from participation given a vector of ex-ante bidder preference

weights θ̃ and a set of potential bidders JP , πj(θ̃, J
P ), exceeds a realization of entry costs ej:

djt = 1 ⇔ ejt ≤ πj(θ̃, J
P , ut)

Given the reduced form model of participation probabilities, I cannot recover the distri-

bution of entry costs directly. However, the threshold rule is informative about bounds on

realizations of entry costs. Specifically, the expected profits of potential bidders who did not

enter must lie below their realization of ej. Conversely, the expected profits of participants

exceed their entry cost draw.

Obtaining expected profits πj(θ̃, J
P , ut) is a numerically challenging task, as they inte-

grate out within-auction profits over a project completion cost draw cj, vector of ex-post

bidder preference weights θ conditionally on a vector of ex-ante bidder preference weights θ̃,

and the set of actual bidders JA conditionally the set of potential bidders JP :

πj(θ̃, J
P ) =

∑
JA⊂JP

j∈JA

∏
k ̸=j
k∈JA

P [dkt = 1|θ̃, JP ]
∏
ℓ ̸=j

ℓ∈JP \JA

(
1−P [dℓt = 1|θ̃, JP ]

) ∫
θ

∫
c

πj(c; θ, J
A)dF c(c)dF θ(θ|θ̃)

Equilibrium bidding functions do not have a closed form and need to be solved numer-

ically. To do so, I modify shooting algorithms for solving two-point boundary problems to

the setting with arbitrary ex-post bidder preference weights. The main challenge lies in

accommodating bid bifurcation (Hubbard and Kirkegaard, 2019) resulting from potentially

different supports of equilibrium bids among bidders Lebrun (2006). I describe this in detail

in appendix D.

Integration over the conditional distributions of ex-ante bidder preference weight is multi-

dimensional. To maximize the accuracy of numerical integration and limit the number of

necessary function evaluations, I use generalized Laguerre quadrature which fits particularly

well to the framework with F θ parametrized as Gamma.
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6.2.6 Operator’s Problem

The definition of operator’s problem leads to a multinomial choice framework. This case is

special compared to other models in the literature because the operator essentially chooses

a distribution of winning probabilities and expected prices over a range of potential bidders

instead of choosing a product itself. I follow the strategy of Petrin (2002) and Gentzkow

(2007) to use a rich specification that would free the model from heavy dependence on the

logit idiosyncratic taste shock associated with choices of θ̃.

In the baseline specification, I assume that operator’s stream of utility associated with

the win of producer j depends on a dummy indicating whether j’s products are already in

the fleet, a dummy of whether j has won an auction within the past 3 years, a dummy of

whether j’s buses have arrived as second-hand buses within last three years, indicator of the

fact that the current generation of j’s products is already in the fleet, indicator of whether

j’s buses of the same drive are already in the fleet and producer’s share in the fleet given

their win. I also include producers’ fixed effects, which I model as random coefficients to

account for unobserved qualities of a match in operator-producer pairs ij. The specification

of random coefficients is standard: I assume they follow a normal distribution with mean

and variance to be estimated. I follow the simulated maximum likelihood strategy, averaging

over draws of random tastes and unobserved auction-level heterogeneity.

7 Estimation Results

This section presents the results of the estimation. I divide it into three subsections, dis-

cussing the bidding, entry, and operator stages respectively. Unless stated differently, all

monetary terms are expressed in millions of 2010 USD.

7.1 Bidding Stage

Project completion costs are a product of observed (Ξ) and unobserved (u) auction hetero-

geneity and individual component c. Figure (2) presents the estimated densities of these

components.
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Figure 2: Estimated densities of project completion cost components.

(a) observed auction heterogeneity Ξ (b) unobserved auction heterogeneity u

(c) individual completion costs c (d) operator’s price estimate b0

(e) descriptive statistics

min med max mean st dev

observed heterogeneity (millions 2010 USD) 0.056 1.948 153.32 5.029 9.082
unobserved heterogeneity 0.604 0.99 1.665 1.008 0.179
price estimate 0.736 1.0 1.39 1.008 0.131
completion costs 0.257 0.916 1.217 0.89 0.185

The distribution of observed auction heterogeneity is skewed with a long right tail, as

depicted in panel (2a). Its variance is large compared to mean (panel 2e). These observations

suggest that the auction orders reflect diverse needs of the operators. The market observes

a few outstandingly large contracts. The distribution of unobserved auction heterogeneity

(panel 2b) is more symmetric than the observed heterogeneity component, and also much

more concentrated around the mean. However, the longer right tail indicates presence of

infrequent auctions with high realizations of u.
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Since not only costs but also optimal bidding is separable in observed and unobserved

auction level heterogeneity, these two components describe auction level profitability. Since

the observed heterogeneity realization is technically a fitted value in a regression in which the

explanatory variable is price, I think of it in terms of the monetary value of the project. The

unobserved heterogeneity shifts it up or down due to factors hidden for the econometrician,

including specification details not included in the sample or less tangible factors such as

prestige of realizing contracts for big operators.

The lower bound of the individual component is nearly three times smaller than the

lower bound of the distribution of operator’s price estimates (panel 2d). The latter is a good

proxy of a variation in submitted bids, which is free from the effects of bidder preference

weights and participation patterns. Bidders’ opportunity for large mark-ups is concentrated

only in the low-density regions of the left tail (panel 2c). The difference in median bidders’

individual cost components and operator’s price estimates amounts to approximately 10%

(panel 2e) and remains comparable at the right tail.

7.2 Entry Stage

7.2.1 Ex-Ante Bidder Preference Weights

Figure (3) presents results of the estimation of ex-ante bidder preference weights distribu-

tions and associated latent class mixing weights. The upper part of panel (3a) shows the

summary statistics of conditional distributions of ex-post bidder preference weights given

ex-ante preferential status. The most preferred bidders are sure to keep this status if they

decide to participate, regardless of the entry decisions of other bidders. The less preferred

bidders receive ex-post bidder preference weight on average of 4.31. This number is compa-

rable to the bidder preference weight of the second most preferred bidder observed in the

raw data. Less-preferred bidders have a good chance of receiving favorable weights. Non-

preferred bidders also have a chance for small draws, but it is slight. On average, they are

assigned ex-post bidder preference weight exceeding 17.

These results should be interpreted bearing in mind that final preferential treatment

depends on entry. If the most preferred bidder enters, they retain the most preferred status,
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Figure 3: Conditional distributions of ex-post bidder preference weights: F θ(·|θ̃).

latent class distributions

bidders mean st. dev. N

most-preferred (θ̃ = 0) 0 0 938

less-preferred (θ̃ = 1) 4.31 3.42 359

non-preferred (θ̃ = 2) 17.06 9.81 602

(a) parameter estimates (b) cumulative distribution functions

or zero ex-post bidder preference weight. However, the preferential treatment of actual

bidders that have been assigned a positive ex-ante bidder preference weight depends on the

configuration of other participants and their draws of ex-post bidder preference weights.

I use estimates of the mixing weights associated with latent distribution to infer ex-ante

bidder preference weights. The mixing weights describe the probability of being assigned

θ̃ = 1 as opposed to θ̃ = 2, given a set of covariates. I explain this probability using a

range of variables related to the operator’s fleet, and operator and order characteristics. The

estimates are attached in table (11) in appendix G. The number of most-preferred bidders

is nearly equal to the number of auctions, confirming substantial degree of favoritism.

Panel (3b) shows that the conditional distribution of ex-post bidder preference weights

among non-preferred bidders first-order stochastically dominates the analogous distribution

among less-preferred bidders. This feature has not been imposed on the estimation routine.

Estimates recover assumed patterns, strengthening the distinction between less- and non-

preferred potential bidders. That speaks in favor of latent class specification and estimation

reliability.
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7.2.2 Entry Probabilities

Table (2) presents estimates of the auction participation probability. To make the results

interpretable, I focus on the average marginal effects (continuous variables) and average

marginal changes (discrete variables) of explanatory variables on participation probability.

Table 2: Entry stage estimates – average effects on participation probability.

average effects

competitive environment

own weight: θ̃ = 1 −0.159∗∗∗
(0.003)

own weight: θ̃ = 2 −0.246∗∗∗
(0.015)

competitors’ weights: 1st best θ̃ = 1 0.115∗∗∗
(0.003)

competitors’ weights: 1st best θ̃ = 2 0.294∗∗∗
(0.003)

competitors’ weights: 2nd best θ̃ = 1 0.023∗∗∗
(0.004)

competitors’ weights: 2nd best θ̃ = 2 −0.019∗∗∗
(0.005)

competitors’ weights: 3rd best θ̃ = 1 0.088∗∗∗
(0.002)

competitors’ weights: 3rd best θ̃ = 2 0.047∗∗∗
(0.008)

# potential bidders −0.035
(0.092)

fleet composition
incumbent −0.003

(0.005)

won within past 3 years 0.182∗∗∗
(0.007)

2nd hand delivery within past 3 years 0.004∗
(0.002)

brand’s current generation in the fleet 0.196∗∗∗
(0.006)

producer’s bus of the same drive in the fleet −0.008
(0.004)

compatibility index (non-incumbents) −0.01
(0.009)

# brand in the fleet −0.014
(0.115)

characteristics of the order
ordered drive already in the fleet −0.095∗∗∗

(0.011)

auction profitability Ξ(xt) · ut 0.032
(1.089)

N 3214

Delta method standard errors in parentheses. p. val: ∗∗∗ ≤ 0.001, ∗∗ ≤ 0.005, ∗ ≤ 0.01. Average marginal effects
are obtained as the average of marginal effects for continuous variables, expressed in standard deviation units or
marginal change effects for categorical variables. The index of compatibility between a non-incumbent producer
and the operator’s fleet is constructed as follows. First, I calculate correlation coefficients between the number
of buses in operators’ fleets by all pairs of producers and average it over time. The compatibility index for a
non-incumbent is an average of the correlations between the non-incumbent and incumbents, weighted by the fleet
share of the incumbents. The compatibility index is by definition normalized to the interval [−1, 1]. High values
of the index indicate high levels of compatibility between non-incumbent and the operator’s fleet.
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I distinguish three main channels affecting bidders’ decision to enter: factors related to

the auction competitive environment set by the operator, factors related to the operator’s

fleet and factors related to characteristics of the order.

Potential bidders take into consideration both their own and competitors’ ex-ante bidder

preference weights. Potential bidders who are less-preferred (θ̃ = 1) participate in an auction

with a probability 15.9 percentage points smaller than their most preferred competitors. This

effect strengthens among the non-preferred potential bidders, whose entry rate is smaller by

24.6 percentage points. Ex-ante bidder preference weights assigned to the competitors are

also important. Intuitively, less preferable treatment of other potential bidders decreases

competitive pressure and increases the chances of winning at the bidding stage. As a result,

potential bidders whose most preferred opponent received θ̃ = 1 participate with 11.5 per-

centage points higher probability than if facing opponents with θ̃ = 0. Those who are to

compete against solely non-preferred bidders participate with a probability larger by 29.4

percentage points. Conditional on own and competitors’ ex-ante bidder preference weights,

the number of potential bidders does not play a big role in deciding whether to participate

in the auction.

Conditional on the competitive environment, the operator’s fleet structure explains signif-

icantly potential bidders’ auction participation patterns. This can be interpreted as evidence

of incumbent advantage among potential bidders. Incumbent advantage refers to a situation

in which it is easier for incumbent potential bidders to participate in an auction. That may

be related to the benefits of an established connection with the operator. With buses already

in the operator’s fleet, producers frequently have set up a network of authorized workshops

in the proximity of the operator’s depot as well as spare parts delivery chains. These fac-

tors are often required in auction specifications and contribute to entry costs. Additionally,

since operators tend to keep their standards roughly fixed across auctions, previous deliveries

ensure that producers have already implemented these standards in their production lines.

Even though the incumbency status itself does not affect entry, producers who have

delivered their buses recently are more likely to enter—by up to 18.2 percentage points if new

buses have been delivered within the past three years. This finding supports the incumbent

advantage hypothesis, as recent orders tend to be most correlated with the current one.

41



In the same spirit, auctions by operators who possess the newest generation of producer’s

products in their fleets are more likely to attract these producers. Incumbent advantage

strengthens the lock-in between operators and producers.

Eventually, auction characteristics also affect entry. If the operator orders buses with

a type of drive that has not been previously exploited, they may expect increased entry.

Consistently with intuition, more profitable auctions attract more bidders, however, the

estimate lacks precision.

7.2.3 Entry Costs

The comparison between average expected profits among potential bidders who did not enter

and the participating bidders reveals bounds on average entry costs. Figure (4) presents the

results.

Figure 4: Expected profits from the participation in auction.

participation
no yes

% of average project completion cost 8.41 10.27
USD (millions, 2010) 0.32 0.53

(a) bounds on average entry costs (b) cumulative distribution functions

Panel (4a) indicates that the average entry cost lies between 8.41% and 10.27% of average

project completion costs. These numbers are high, but comparable with entry costs obtained

in the literature (Li and Zheng, 2009; Athey, Levin, and Seira, 2011). Estimated bounds

are relatively tight. The difference between them amounts to approximately 1.86% of the

average project completion cost.

Panel (4b) presents the empirical cumulative distribution of expected profits from par-

ticipation among participants and non-participants. The cumulative distribution function
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of entry costs lies between these two lines. In particular, it suggests that entry costs are

contained in an interval between 5% and 15% of average project completion costs.

7.3 Operator’s Stage

Table (3) presents estimates of the operator’s utility parameters. Consistent with descriptive

evidence, operators favor incumbent producers. The preference towards winners of more

recent auctions is even stronger. Interestingly, a recent delivery of second-hand buses does

not significantly improve producers’ chances of being favored. This finding suggests that

second-hand purchases are driven by other factors than purchases of new buses, for example,

availability. The lock-in type of relationship between operators and producers goes beyond

solely technical aspects of the buses, as indicated by a non-significant estimate at the dummy

indicating that the current producer’s generation of products is already in the operator’s

fleet. Not only do operators derive utility from overall fleet unification, but they also prefer

the unification of sub-fleets defined by bus drives. Producer’s share in the fleet conditional

on their win increases the operator’s utility, suggesting the existence of costs related to

maintaining more diverse fleets. However, the coefficient is not precisely estimated.

The estimated coefficients are expressed in units of utility and so cannot be directly

interpreted. To be able to say more about the degree of switching costs, I first express them

in monetary terms by dividing them by the estimate of the price coefficient. The resulting

numbers are known as Willingness-To-Pay (WTP) in the discrete choice literature. Second,

I divide them by the average value of the order as measured by auction level heterogeneity

Ξ(xt) · ut. Table (4) presents the results of a subset of variables.

On average, incumbent’s win is priced at 10.58% of the order value, holding other factors

constant. Operators are willing to surrender an additional 9.61% of the order value to ensure

unification within the bus drive. WTP for winning of a producer that won a recent auction

amounts to 7.99% of the order value. That means operators are willing to pay on average

up to 28.18% of the order value for the win of the most suitable incumbent. The WTP for

an incumbent win in terms of value of the order is very high, which partially results from

the tendency to carry small and frequent orders.
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Table 3: Estimates of operator’s utility parameters.

price
expected price −2.106∗∗∗

(0.364)

fleet
brand in the fleet 3.506∗∗

(1.097)

won within past 3 years 3.184∗∗∗
(0.754)

2nd hand delivery within past 3 years 0.816
(0.794)

brand’s current generation in the fleet 0.682
(0.88)

producer’s bus of the same drive in the fleet 2.649∗
(1.09)

producer’s share if fleet if wins 3.032∗
(1.518)

brands
dummies
random effects
N buyers 176
N auctions 926
N alternatives 59428

Standard errors in parentheses. p. val: ∗∗∗ ≤ 0.001, ∗∗ ≤ 0.005, ∗ ≤ 0.01. The specification with random
coefficients will be added in the next draft. Current estimates of standard errors do not account for uncertainty
related to using estimates obtained in the previous steps.

Table 4: Quantification of disruption costs: Willingness-To-Pay approach.

brand in the fleet 10.58∗∗
(3.84)

won within past 3 years 9.61∗∗∗
(2.87)

producer’s bus of the same drive in the fleet 7.99∗
(3.5)

Average effects expressed in % of the order value Ξ(xt) · ut. Delta method standard errors in parentheses. p. val:
∗∗∗ ≤ 0.001, ∗∗ ≤ 0.005, ∗ ≤ 0.01.

8 Counterfactual Analysis

In this section, I use estimates of the structural model to study counterfactual scenarios.

The main motivation is to find ways to increase buyers’ welfare. I show that bid preference

programs can balance the trade-off if an auction attracts sufficiently many bidders, whereas

forcibly promoting competition while ignoring the underlying lock-in relationship between

buyers and incumbent sellers would lead to counter-productive outcomes.
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8.1 Separating the Effects of Discrimination and Auction Par-

ticipation

Will operators face lower prices if they set less discriminatory bidder preference weights

holding participation fixed, or if they manage to attract more bidders holding discrimination

fixed? In this section, I separate the effects of bidder preference weights and participation

on prices using the bidding stage estimates. I focus on ex-post bidder preference weights to

keep the analysis closer to the raw data evidence.

I start with an investigation concerning how the ex-post bidder preference weights affect

producers’ bidding. I consider a counterfactual scenario in which I increase the bidder’s

preference weight by a standard deviation for each auction and each actual bidder. I study

how this affects the average bid of a bidder whose weight increased, average bids of their

competitors, and the average winning bid. In this exercise, I keep the participation fixed,

considering solely participation patterns from auctions in my data. For meaningful analysis, I

restrict my attention to auctions with at least two actual bidders. The results are summarized

in table (5)

Table 5: Effects of discrimination on average bidding.

mean st dev

affected bidder’s bids -6.339 0.318
others bidders’ bids 1.5 0.738
winning bids 0.248 0.824

Change in average optimal bidding between data and counterfactual scenario
as % of data values.

Considering a set of auctions in my sample, increasing bidder preference weight for one

of the bidders affects mainly their bidding behavior. The affected bidder decreases their

bids by 6.3% on average. The competitors do not react strongly, increasing their bids only

by 1.5%. The expected winning bid increases only by 0.25%. This is because the potential

discounts resulting from the decrease in price by the affected bidder are annihilated by their

decreased probability of winning. Holding participation fixed, the discrimination channel

does not affect significantly the costs of procurement but shifts contract allocation towards

more preferred bidders.
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In the second step, I switch my attention to the effects of participation. I consider a

counterfactual scenario in which I assume an additional potential bidder decided to enter. I

study how this affects average prices of original participants and average winning bids. To

keep the analysis more realistic, I assume that the additional entrant is the non-participant

with the lowest (the most favorable) ex-post bidder preference weights in the data. Table

(6) presents the result of this counterfactual exercise.

Table 6: Effects of participation on average bidding.

mean st dev

true participants’ bids -0.499 7.333
winning bids -5.09 3.615

Change in average optimal bidding between data and counterfactual scenario
as % of data values.

Given the sample, the presence of an additional actual bidder leads to a decrease in

winning bids by 5.1%. The average effect of the additional participant on the bids of true

participants is small. However, its large variance suggests heterogeneous impacts. This

is consistent with intuition; as in the counterfactuals scenario, the additional participant’s

weight may have been much larger or much smaller compared to the true participants.

Results of this counterfactual exercise suggest that the bid preference program itself does

not have to be a source of a significant increase in the expected winning price. It rather

reallocates the winning probabilities among bidders. In turn, participation is the leading

margin of potential reductions in procurement costs. This indicates that if the auctioneer is

able to attract a sufficient number of bidders, bid preference programs may be suitable for

balancing the trade-off between price and disruption costs. Specifically, preferred bidders are

more likely to win whereas the competitive pressure from other auction participants would

keep the prices low.

8.2 The Value of Bid Preference

In this section, I use the full structural model to perform counterfactual exercises. I show

that forcibly promoting competition while ignoring disruption costs may lead to counter-

productive results. In turn, bid preference programs may allow operators’ to balance their
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trade-off between achieving low prices and avoiding switching costs if buyers can ensure

sufficient participation. The computational approach behind the counterfactual exercises is

attached in appendix H.

The baseline scenario assumes the original data environment, that is, auctions with bid

preference and estimated probabilities of entry. I compare the outcomes under the baseline

scenario to outcomes generated in three counterfactual scenarios. First, I take away the

possibility of favoring bidders by assuming that each auction is a low-price auction, in which

the cheapest bid wins. Comparing buyers’ welfare attained in the low-price auction and the

baseline scenarios describes the value of bid preference to the operators. Second, I maintain

the possibility of using bid preference but assume all potential bidders participate in each

auction. The goal of analyzing the perfect participation scenario is to verify whether the

bid preference help buyers balance their trade-off by allowing them to reallocate winning

probabilities towards incumbent bidders while managing to keep the prices low. Third, I

consider a combination of the two mentioned scenarios, that is low price auctions with full

participation.

I use compensating variation to study changes in operators’ welfare. Specifically, I ask

how much money operators need to be given (or taken) to be indifferent between the base-

line and counterfactual scenarios. To answer this question, I obtain the expected buyers’

utility under the baseline scenario EU0 and analogous expected utility under counterfactual

scenarios EUi, i ∈ {L, S,B} where L stands for low price auctions, S for full participation,

and B for both. The resulting compensating variation is given as:

CVi =
EUi − EU0

ζb
, i ∈ {L, S,B}

where ζb is the coefficient at price in the operator’s utility function.

Table 7 presents the results. The first row describes the calculated compensating varia-

tion. Switching an auction format to low-price auctions has a detrimental effect on operators’

welfare. On average, operators are willing to pay 0.56 million 2010 USD for being able to

use bid preference in an auction. In only 3.6% auctions the low-price setting would actually

improve buyer’s welfare. In turn, the operators are willing to pay 0.2 million to be able to
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Table 7: Counterfactual exercise—compensating variation and contributing factors.

Scenario

low price auctions perfect participation both

compensating variation mean -0.56 0.2 -0.37
% positive 3.63 52.76 14.62

∆ price mean -0.03 -0.37 -0.3
∆ # participants mean 0.17 1.88 1.89
∆ # brands if fleet∗ mean 0.35 0.43 0.62

Compensating variation and prices expressed in millions of 2010 USD.

attract all potential bidders, while being able to favor some of them. Increasing participation

while still allowing for auction favoritism improves welfare in more than half of the auctions.

Switching to a low-price auction format and at the same time ensuring full participation has

a negative impact on buyers’ welfare.

Switching to a low-price auction format leads to a small decrease in prices (30k dollars

per auction). This is driven by the insufficient increase in auction participation—on average

auctions under the low-price scenario observe only .17 actual bidders per auction more than

in the baseline scenario. Removing favoritism leads to a relative increase in entry by non-

incumbents. After 4 auctions, an average fleet under the low-price scenario contains 0.35

more brands.

Perfect participation by construction tackles the problem of insufficient entry. The de-

crease in expected prices is a magnitude larger than under low-price auctions, and in over

52% of cases outweighs the increase in disruption costs. This is possible because the bid

preference program allows the operators to re-allocate winning probability towards the in-

cumbents despite increased entry. Without bid preference, the decrease in price associated

with increased participation does not offset the increase in switching cost, as depicted in the

last column of table 7.

The effects of switching to a low-price auction format and ensuring full participation are

heterogeneous across auctions. Figure 5 shows the calculated compensating variation by the

size of the order. In both scenarios, compensating variation is increasing in the number of

buses ordered in an auction. Intuitively, the significance of disruption costs decreases relative

to the value of the order, being replaced by price as the main contributor to welfare. Low-
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Figure 5: Compensating variation and order size. Solid line depicts a fitted trend.

price auction scenario leads to small decreases in prices, hence the trend of compensation

variation is flat. It would take orders of over 100 buses to make the price discount account

for the increase in switching costs. In turn, with full participation the price reduction is

significant. On average, compensating variation is positive for orders of only 5 or more

buses.

9 Discussion

The results of this paper indicate the necessity of accounting for factors other than price

in designing procurement markets. The welfare loss associated with eliminating auction

favoritism is substantial. A key to improving the situation of the buyers and hence the

efficiency of public spending is potential bidder participation. Bid preference programs may

successfully balance prices and switching costs if the entry generates enough competitive

pressure.

Low auction participation is associated with the lock-in relationship between an operator

and a producer. The lock-in weakens participation incentives through two channels. First,

the presence of switching costs induces operators to set up a system of preferential weights.

Due to entry costs, non-preferred potential bidders do not find it profitable to participate

in the auction. Second, incumbent advantage smooths out part of entry costs making them
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more likely to participate even without preferential treatment. In addition, participation is

low because of the relatively small number of potential bidders across the auctions.

There are a few possible solutions that could mitigate the lock-in effects and encourage

more competition without sacrificing fleet unification motive and associated bid preference

systems. First, the government may directly subsidize entry. The counterfactual scenario of

full participation can be seen as a limiting case of such a subsidy. The idea is to pay a part

of potential bidders’ entry costs to encourage participation without affecting bid preference,

especially among potential bidders with non-favorable weights and non-incumbents that

cannot enjoy the benefits of incumbent advantage. However, it may be hard to implement

an entry subsidy. An immediate set of questions to ask is who to subsidize—should it be all

potential bidders consistently with the principle of equal treatment of the bidders, or should

it be potential bidders with non-favorable preference weights? A successful subsidy program

would also have to be designed in a way to prevent fictitious entry in which potential bidders

would participate only to collect the subsidy, without the intention to bid competitively and

win the auction.

Another type of subsidy is to create favorable conditions encouraging more producers to

enter the market and increase the pool of potential bidders. However, this type of subsidy

faces the risk related to the fact that new producers would initially carry the non-incumbent

status in all of the auctions and it may be hard for the to establish their position on the

market. As a result, they may be forced to exit the market, making the subsidy wasteful.

Subsidizing costs of participation in an auction or entry to the market are effectively

targeting the participation of non-incumbents. Even though it is likely to decrease prices, it

may hurt operators’ fleet unification efforts and fail to improve market efficiency. Since the

low number of potential bidders in auctions is partially related to the fact that producers

specialize in specific types of buses, a more effective subsidy may be to support the develop-

ment of a more diverse pool of products offered by existing producers. This subsidy would

induce more competition among the incumbents, giving the premise of lower prices while

keeping the pool of incumbent brands constant.

Subsidies are not the only way to improve the efficiency of public procurement with

switching costs. The results of the counterfactual analysis indicate that with an increase
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in order size, the relative importance of disruption costs decreases. Hence, another idea is

to make operators organize auctions for larger orders, perhaps less frequently. To take into

account uncertainty regarding future funding as well as the fact that yearly only a fraction

of buses is to be replaced, the object of an auction can be the right to deliver buses within

the next n orders, for some n > 1. Such an auction may be much larger than most of the

auctions observed in my data, hence should attract more bidders regardless of incumbency

status. At the same time, the switching costs would be of smaller importance compared to

the value of the order. As a result, operators may lower the degree of discrimination, as price

discounts related to more competitive settings may surpass the costs of the introduction of

a new brand to their fleet. Less discrimination would imply even more actual bidders. Since

its winner would serve a few consecutive orders, the uncertainty regarding the identity of the

winner would decrease compared to the baseline setting. Therefore, larger (but potentially

less frequent orders) would allow to mitigate the adverse effects of disruption costs and

encourage potential bidders’ participation at the same time.

10 Conclusion

In this paper, I investigate buyers’ trade-off between being offered low prices and avoiding

switching costs of introducing a new brand that arises in repeated purchases of durable

goods using public procurement procedures. I focus on an empirical example of municipal

bus operators in Poland who use a common procurement format of scoring auctions to

implement bid preference and favor incumbent bus producers in consecutive orders. I collect

detailed data on repeated measurement of auction design linked to operators’ fleets that is

particularly suitable for identifying the main driving forces of the trade-off: producers’ costs

of participation in an auction and operator’s disruption costs related to the introduction of

a new brand and maintaining more diverse fleets.

I develop and estimate a structural model of public procurement with bidder favoritism

to quantify the costs. Potential bidders’ average entry costs amount to 8.4%-10.3% of project

completion costs and significantly discourage participation, especially among bidders with

unfavorable treatment assigned by the operator. The results suggest a strong two-sided lock-
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in relationship between operators and incumbent producers. To keep their fleets unified,

operators are willing to pay over a quarter of the average order value for a win of the

most suitable incumbent. Incumbent producers enjoy a so-called incumbent advantage,

which decreases their entry costs and makes their participation more likely regardless of bid

preference.

The main takeaway from this paper is that the design of public procurement should not

only target achieving low prices but also account for other aspects contributing to buyers’

welfare. Allowing for bidder favoritism may enable buyers to balance their trade-off in

repeated purchases of durable goods. However, a necessary condition is to ensure sufficient

participation, which may be difficult given the presence of two-sided lock-in. I discuss several

policies that may improve participation and at the same address the lock-in relationship

between operators and incumbent producers, based on subsidizing potential bidders’ entry,

market entry of new potential bidders, and expanding the offer of existing potential bidders,

as well as redesigning the timing and scale of organized auctions.
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Appendix

A Procuring City Buses in Poland

A.1 Producers’ Technological Solutions – Examples

As specified in EU directives (2014/24/EU, 2014/25/EU), scoring auctions and associated

scoring rules aim to take into account the quality of the goods procured in addition to their

price or life cycle costs and ensure in this way the best value for money purchases. Operators

choose bus-related criteria to promote specific qualities, fulfilling the intention of lawmakers.

However, in many cases, the solution receiving the full score may not be objectively better

than non-preferred solutions. For example, windshield division is the most frequently used

criterion related to bus technology. Bus windshields can be divided vertically into two halves,

making replacement cheaper in case of one-sided damage. However, the dividing column may

affect the driver’s view. Panoramic (non-divided) windshields offer a better view. However,

in case of any damage, replacement gets more costly. Operators assign a full score for both

solutions, confirming that neither solution dominates the other. The possibility of applying

windshield division is related to how the bus chassis is constructed. Some producers do not

offer a divided windshield.

Another frequently used criterion assigns points for either horizontal or vertical alignment

of the engine. Using horizontal engines, producers can increase the number of passenger seats.

In addition, access to necessary components may be easier. Vertical engines in turn decrease

the number of passenger seats, but usually allow for limiting the number of stairs passengers

need to climb to take a seat. Again, the alignment of an engine is an essential part of a bus

and cannot be easily adjusted. Depending on the operator, both solutions may be given a

full score. Figure (6) shows the distinction between described bus characteristics.

A.2 A Simple Example of Auction

To understand how the mechanism of assigning bidder preference weights through scoring

criteria related to bus technological solutions works, consider a simple example of an auction

with three scoring criteria: price, windshield division, and engine alignment. The lowest price
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Figure 6: Criteria related to bus technology – examples.

(a) windshield division

(b) horizontal engine alignment (c) vertical engine alignment

scores 80 points, and more expensive offers receive proportionally less. Buses with their

windshields divided receive 5 points, and horizontal engine alignment is worth 15 points.

Table (8) presents the details.

Suppose that two bidders submit their offers. S offers cheaper buses, hence gets 80 points

in price criterion. Their buses have divided windshields and vertically aligned engines, which

results in 5 points assigned for bus-related criteria. M submits a higher price and hence

receives fewer points. They offer no windshield division but receive 15 points for a vertically

aligned engine. Eventually, S wins with 85 assigned points.
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Table 8: Scoring auction design – example.

Auction Design Bidders
S M

criterion max points value points value points

price prop. to lowest 80 $150k 80 $200k 60

windshield division
yes 5 5 – –
no 0 – – 0

engine alignment
horizontal 15 – – 15
vertical 0 0 – –

total 100 85 75

In this auction M receives more points than S in bus-related criteria, hence it is more

preferred than S by the operator. If M submits a price lower than S, then they surely win.

The link between points assigned by the scoring rule and bidder preference weights lies in

the question of how much higher price M can submit in comparison to S’s bid and still win.

Using the fact that points for price are assigned proportionally to the lowest submitted price,

the necessary and sufficient condition for M to win despite bidding a higher price is:

bS
bM

· 80 + 15 ≥ 80 + 5 ⇒ bM ≤ 1.143bS

The second inequality corresponds exactly to the way we define bidder preference weights

θ. The weight for the most preferred bidder M θM = 1, and θS = 1.143.

B Detail on Data Collection and Processing

B.1 Data Collection

The first step of data collection was to identify auctions. To produce a comprehensive picture

of the market, I purchased a list of all auctions that have been concluded between 2011–2019

from a small consulting company operating in the industry. I expanded the list for 2006–2010

and 2020–2022 using Tenders Electronic Daily (TED), a European online service on public

procurement12, tracking new arrivals in operators’ fleets, and browsing industry press 13.

12European Law requires publishing a contract notice at TED if the estimated value of the contract exceeds
a certain amount of money. That amounts to approximately 2–3 buses.

13Infobus (transinfo.pl/infobus) and Transport Publiczny (transport-publiczny.pl) were particu-
larly useful.
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For each auction identified in the first step, I sought official documents to retrieve order

requirements, scoring rules, and submitted bids. This data was still available online for more

recent auctions. Others came from various sources. The consulting company mentioned has

provided me with a significant fraction of the missing documents. I requested the remaining

documents directly from the operators. However, some older auctions were not available any

longer through this channel. I have managed to retrieve documents for some older auctions

by scraping Internet archives14 and document sharing platforms15. In total, I collected

documents for 85% of all identified auctions between 2006 and August 2022 (97% for auctions

in 2011–2022).

The operators’ fleets data comes from scraping a webpage http://phototrans.eu/,

a photo gallery that has evolved into a comprehensive database about vehicles owned by

operators all around the world, especially in Poland. For each bus-operator pair, dates of

purchase and scrapping (or re-selling), a list of previous owners, and some limited technical

details are available. The coverage of the fleet data is very good. In particular, it contains

virtually all of the buses listed in auction data.

B.2 Data Processing

The official procurement documents come in the form of pdf files of various quality. I process

them using optical character recognition algorithms to retrieve auction order requirements.

However, extracting the definition of criteria within the scoring rule was hard to automate,

as each operator formulates them in their way, using different expressions and formats. I

process each auction manually to maximize the quality of extracted scoring rules, as they are

of central interest to my analysis. For similar reasons, auction results (bidders, bids, final

scores) have been processed manually as well.

Auction requirements define a set of potential bidders, that is, a list of producers that

offer products of demanded characteristics and therefore can participate in the auction. A

proper definition of the set of potential bidders is important to study auction participation.

I define the set of potential bidders liberally, taking into consideration demanded length and

14Wayback Machine - an Internet archive services, web.archive.org
15docplayer.pl was particularly helpful.
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drive of the bus and the year in which the auction is carried. The first two categories define

a broad type of bus. The last accounts for producers’ entry and exit. I identify potential

bidders by analyzing the offer of each producer in a given year based on participation in

auctions with a given set of requirements and official product brochures.

I focus my attention on orders for low-entry or low-floor buses, as these constitute a

standard in the European urban bus market and are nearly always demanded by municipal

operators. Moreover, I restrict the sample to cover orders for buses of lengths exceeding 8

meters. This is motivated by the fact that the smallest vehicles are produced with different

technology and mostly by different manufacturers. All of the potential bidders for which I

impute the bidder preference weights offer buses only above 8 meters. These account for

approximately 90% of all auctions (926).

B.3 Data Imputation

The official documents provide the total number of points assigned by the scoring rule to

participating bidders. This allows me to construct bidder preference weights among par-

ticipants and use them to solve for optimal bidding. However, to investigate how bidder

preference weights affect the bidder’s entry, I also need to know the number of points in

criteria related to the bus that would be assigned to nonparticipants had they entered an

auction. This requires knowledge of particular technological solutions used by producers. I

learned them from a range of sources, including official product brochures, results of other

auctions in which scoring criteria included a feature of interest and a given producer par-

ticipated, internet galleries, and YouTube videos16, and use them to impute the number of

points assigned by operators to the non-participating potential bidders.

The imputation proceeds in two steps. First, using knowledge of bus technological solu-

tions by producers, scoring rules announced by operators, and sets of potential bidders across

auctions, I develop an algorithm assigning points to the potential bidders. I focus on 65 bus

characteristics used as technological criteria (referred to as processed criteria), covering 80%

of the total number of points assigned in criteria related to the bus in all auctions and eight

16For more observable characteristics, for instance counting the number of seats available from the floor
level that are easily accessible for disabled passengers.
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producers with 95.5% of sales in the auction data. For each auction, potential bidder, and

processed scoring criterion, the algorithm chooses a solution offered by the producer that

would receive the highest number of points within the criterion. Next, the number of points

assigned in this way across processed criteria is summed. If the scoring rule is constructed

using only processed criteria, the algorithm returns the sum. If the scoring rule contains

criteria outside of the set of 65 processed criteria, the algorithm rescales the obtained sum

by the ratio of the total number of points available in all bus criteria to the total number of

points available in processed criteria.

There are two key aspects of the imputation process. First, the algorithm needs to

accurately assign points for technological solutions. For various reasons, producers may not

choose to offer solutions that would bring them the maximum number of points within a

given criterion17. To test the algorithm quality, I compare the true number of points received

by auction participants within the processed criteria with the analogous sum imputed by the

algorithm. Table (9) presents the results of t-test with the null hypothesis of the same

averages. A very large p-value suggests satisfactory quality of the imputation algorithm.

Table 9: Imputation algorithm quality test: comparison of the means.

true imputed difference p-val

16.735
(9.613)

16.672
(9.623)

0.063 0.887

Second, the rescaling procedure implicitly assumes that the processed criteria are chosen

at random from the set of all criteria related to bus technology. To test whether rescaling

does not introduce bias into the final imputed number of points, I sum the true number

of points received by auction participants within the processed criteria, rescale this number

and compare it to the true total number of points assigned to the participant. Table (10)

presents the results. I cannot reject the null that rescaling is unbiased.

In the last step, I use equation (1) to transform the total number of points assigned to

the bidders in technological criteria into the bidder preference weights.

17There may be a few reasons behind that. For example, the producer may offer a cheaper solution, or
offer a technological innovation that was not predicted by the algorithm.
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Table 10: Scaling quality test: comparison of the means.

true scaled difference p-val

19.819
(9.615)

19.907
(9.806)

-0.088 0.875

C Bidding Equilibrium

C.1 Existence and Uniqueness

The differential equations in (2) seem difficult to work with, as they involve evaluating the

inverse bidding functions at different arguments. Fortunately, it turns out that any low-price

sealed bid auction with bidder preference weights can be expressed as an asymmetric low-

price sealed bid auction without bidder preference weights, defined on the so-called effective

units. To see this, for all j define effective bids as b̃j = θjbj and effective cost as c̃j = θjcj.

Note that now b̃j ∈ [θjbj, θjbj, ] ≡ [b̃j, b̃j]. Analogously, c̃j ∈ [θjcj, θjcj, ] ≡ [c̃j, c̃j].

Define also functions γ̃j : [b̃j, b̃j] → [c̃j, c̃j] for each j in the following way:

γ̃j(b̃k) = θjγj(
b̃k
θj
)

This function is the effective inverse cost function. Note that:

γ̃j(b̃j) = θjθjγj(
b̃j
θj
) = θjγj(

θjbj
θj

) = θjγj(bj) = θjcj = c̃j

Eventually, let F̃j(c̃j) = Prob[C̃j ≤ c̃j] = Prob[θjCj ≤ θjcj] = Fj(cj). Then F̃ : [c̃j, c̃j] →

[0, 1] is a well-defined cumulative distribution function of the distribution of effective costs

c̃j.

We can express the actual bidder j’s profit in terms of the effective units:

πj(bj; cj, θ, J
A) = (bj−cj)·

∏
k ̸=j

[
1−Fk

(
γk(

θj
θk
bj)

)]
=

1

θj
(b̃j−c̃j)·

∏
k ̸=j

[
1−F̃k

(
γ̃k(b̃j)

)]
≡ π̃j(b̃j; c̃j, J

A)

This equation shows that the low-price auction with bidder preference weights can be

expressed in terms of an equivalent standard asymmetric auction, defined on the effective

units. In particular, there is a 1-1 mapping between the inverse bidding functions and thus

equilibrium bidding. This allows us to invoke theoretical results by Lebrun (1999, 2006) who
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proved the existence and uniqueness of the equilibrium in IPV asymmetric auctions with

possibly different supports of bidders’ cost distributions. Notably, the equilibrium is in pure

strategies.

Lebrun (2006) also provided a characterization of the equilibrium. It solves the analogous

set of ordinary differential equations expressed in effective units:

γ̃′
j(b) =

1− F̃j

(
γ̃j(b)

)
f̃j
(
γ̃j(b)

) [ 1

#JA − 1

J∑
k=1

1

b− γ̃k(b)
− 1

b− γ̃j(b)

]
(8)

Paired with a set of appropriate boundary conditions, equation (8) determines the set of

equilibrium bidding functions. Below I provide a characterization of the equilibrium defined

on the effective units. The characterization follows Lebrun (2006). It is straightforward to

reformulate it into standard units.

C.2 Characterization

C.2.1 Right Boundary Conditions

I start by describing the right boundary conditions. Without loss of generality, order the

bidders non-decreasingly with respect to the upper extremity of their effective cost distribu-

tion:

c̃1 ≤ c̃2 ≤ · · · ≤ c̃#JA

Let also b̃j be the highest bid submitted by j in equilibrium. By definition of the inverse

cost function, γ̃j(b̃j) = c̃j.

Suppose that bidder 1 bids b̃1 at c̃1. Any other bidder j with cost realization c̃j > b̃1

cannot win and hence may bid any amount larger or equal to the (effective) cost. For

consistency reasons, I follow Krasnokutskaya and Seim (2011) and assume that in such a

situation player j simply bids their cost c̃j.

The degree of competition at the lowest c̃’s is decisive about shape of right boundary

conditions:

• if c̃1 = c̃2 then the upper extremity of the distribution of submitted bids by both

bidders 1 and 2 is equal to these costs. Otherwise, any of these two bidders would have

a profitable deviation. Moreover, as c̃k ≥ c̃1 for any k > 2, bidder k also bid c̃1 at c̃k.
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Therefore, the right boundary conditions are:

γj(b̃) = b̃, j = 1, . . . , J

where b̃ = c̃1.

• if c̃1 < c̃2, then player 1 is capable of having positive profit at c̃1 by setting c̃1 < b̃1 < c̃2.

Note that at the boundaries of this interval their profit is zero – on the left-hand side

the markup is zero, and on the right-hand side the winning probability is zero. In the

interior, the profits are positive. Thus, one can show that: γ1(b̃) = c̃1

γj(b̃) = b̃, j = 2, . . . , J

where the maximal submitted bid is obtained from18:

b̃ = argmax
b

(b− c̃1) ·
J∏

k=2

[
1− F̃k

(
b)
)]

It is important to see that if c̃j > b̃, then player j has a-priori zero probability of winning.

Therefore, favoritism effectively excludes under-preferred bidders with a high-cost realization

from an auction.

C.2.2 Left Boundary Conditions

To investigate the left boundary conditions, relabel bidders such that now:

c̃1 ≤ c̃2 ≤ · · · ≤ c̃J

As in the case of the right boundary, bidder 1 is the most preferred.

Characterizing the left boundary, Lebrun (2006) distinguishes the lowest possible sub-

mitted equilibrium bid b̃ but notices that only the first κ(b̃) bidders actually submit it. For

others, it may be too low compared to their minimal cost. Bidders with indices κ(b)+1, . . . , J

have their own lower extremities of the distribution of winning bids, b̃j, j > κ(b̃). Hubbard

18Note that any player j cannot win with a bid larger than b̃ and by assumption bids their cost. Therefore,

for b ≥ b̃ we get γ̃j(b) = b. So we can skip γ̃k in the equation.
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and Kirkegaard (2019) refer to the phenomenon of unequal lower extremities of the distri-

bution of equilibrium bids submitted by particular players as bid separation.

The lower boundary conditions can be summarized by: γj(b̃) = c̃j, j ≤ κ(b̃)

γj(b̃j) = c̃j, j > κ(b̃)

Values of the lowest bids b̃ and b̃j and κ(b) are not known a-priori. However, Lebrun

(2006) shows that the system is completely determined by b̃. Knowing this value, I can solve

for the equilibrium bidding.

C.2.3 Intermediate Conditions

Between the boundaries, the optimal bidding is given by variants of equation (8), depending

on bid separation. Bid separation is specific for asymmetric first-price auctions in which

lower extremities of cost distributions vary among players and occurs unless κ(b) = J . With

bid separation, there exist a subset of possible equilibrium bid values at their lower range

in which only a subset of bidders competes against each other. The bidders realize it, hence

equation (8) needs to be altered to account only for bidders who may bid a given b̃. Each

variant of FOC equation is valid in appropriate intervals determined by b̃j’s.

Hubbard and Kirkegaard (2019) emphasize the importance of accounting for bid separa-

tion. They show in a numerical example that assuming a common lower boundary may lead

to completely wrong results. Bid separation is very likely to occur in auctions with bidder

preference weights. Even if a researcher is willing to assume the same cost support for all

bidders, the presence of weights stretches and shifts the domain of effective cost distribu-

tions. Eventually, the problem becomes analogous to an asymmetric auction with varying

lower extremities of cost support.

D Shooting Algorithm in auctions with BPW

In order to calculate expected profits I need to recover the set of optimal bidding functions

βj(c; θ, J
A) for each auction, configuration of actual bidders, and vector of ex-post bidder

preference weights. Equilibrium bidding is a solution to a set of ordinary differential equa-
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tions that form a two-point boundary problem, in which the boundary is known only on one

side. In addition, the problem is singular at the known boundary. No closed-form solution

exists. Numerical tools are needed to solve for equilibrium bidding.

I adapt a standard approach in solving for equilibrium bidding in asymmetric auctions

based on shooting algorithms19 to a setting with arbitrary bidder preference weights. Shoot-

ing algorithms are iterative methods of solving boundary value problems that exploit the

fact that the solution is fully determined by b, the lowest bid submitted in equilibrium. In

a standard setting b is the lowest bid submitted by all bidders. An additional challenge

with bidder preference weights comes from the fact that the lowest bid submitted by a given

bidder is not necessarily the lowest bid submitted in equilibrium in general, b. Intuitively,

discriminatory bidder preference weight may imply that the probability of winning at the

lowest realizations of costs is very low, and the under-preferred bidder is actually better off

raising their lower bound of the support of bids submitted in equilibrium. This phenomenon

is known as bid separation (Hubbard and Kirkegaard, 2019)20. Lebrun (2006) showed that

regardless of bid separation, the lowest possible bid submitted in equilibrium b still defines

uniquely the equilibrium. That makes shooting algorithms particularly suitable for setting

with arbitrary bidder preference weights. Guided by Lebrun’s characterization of the equi-

librium in a general setting, I adapt the shooting algorithm to account for potential bid

bifurcation points21.

Hubbard and Kirkegaard (2019) solve for equilibrium bidding with bid separation using

methods based on polynomial approximations. However, they consider a special case in which

there is a good candidate for a bifurcation point. In a slightly different setting, Bolotnyy

and Vasserman (2021) use shooting algorithms accounting for possible bid separation. Both

papers consider setting symmetric equilibria with two types of bidders, in which only one

bifurcation point can occur. To the best of my knowledge, no other empirical papers mention

the possibility of bid bifurcation in their application.

19The use of shooting algorithms in solving for auction equilibrium has been pioneered by Marshall, Meurer,
Richard, and Stromquist (1994) and has been further extended by among others Bajari (2001); Li and Riley
(2007); Gayle and Richard (2008). For a review see Hubbard and Paarsch (2014).

20These authors emphasize the importance of accounting for bid separation in solving for optimal bidding,
showing in examples that a failure to account for it leads to wrong conclusions.

21With N different bidder preference weights we may have up to N − 2 bifurcation points.
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Some authors express concerns about the instability of shooting algorithms, particularly

in the neighborhood of singularity, that is, at the right boundary of project completion

costs distribution (Bajari, 2001; Li and Riley, 2007). Fibich and Gavish (2011) provided a

theoretical argument for the fact that the instability is not caused by a choice of the algorithm

but rather a feature of the problem itself. They show that shooting methods perform worse

with an increase in the number of bidders. In my application, the number of potential bidders

is relatively low and I find the performance of shooting methods satisfactory.

The separability assumption greatly simplifies the computation. It implies that βj(c; θ, J
A, ut,Ξt) =

Ξt ·ut ·βj(c; θ, J
A, 1, 1). Therefore, it is enough to solve for optimal bidding when ut = 1 and

Ξt = 1. I shortly wrote βj(c; θ, J
A, 1, 1) = βj(c; θ, J

A).

I use 4th-degree Runge-Kutta methods in solving ODE given each candidate for the

boundary.

E Bid Homogenization

Observed order characteristics xt may be endogenous in equation (7). If they are correlated

with either ut or bjt, the standard estimation procedure would lead to biased estimates of

xi as well as other parameters in subsequent steps of estimation which rely on homogenized

bids. By assumption, ut is drawn independently from xt. Problems may arise with bjt, as it

is likely correlated with xt both when j = 0 (operator cost estimates) and j > 0 (strategic

components of bids).

The strategic components of bids bjt for j ≥ 1 are functions of project completions cost

realization cjt, the configuration of actual bidders JA
t and ex-post bidder preference weights

θjt. The two latter objects are also dependent on ex-ante bidder preference weights θ̃jt. cjt

is uncorrelated with xt by assumption. However, it is likely the case that more profitable

auctions as described by xt would attract more actual bidders. In turn, the operator may

set more discriminatory ex-ante bidder preference weights when the order is small, to avoid

fleet fragmentation. With more discriminatory bidder preference weights, the operator may

expect higher prices and adjust their cost estimate.

In order to avoid endogeneity bias in estimates of ξ, I control for flexible functions of

ex-post bidder preference weights, the number of actual bidders and dummy indicator for
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j = 0 (denoted by wjt), and order characteristics. Equation (7) becomes:

log b∗jt = x′
tξ + (wjt · xt)

′ν + log ut + ϵbjt, j = 0, 1, . . . (9)

where ξ and ν are vectors of parameters and ϵbjt is an error term. I estimate equation (9)

using OLS on pooled data containing bids as well as cost estimates b0t. Eventually, I obtain

homogenized bids as:

log ˆbujt = log b∗jt − xt · ξ̂ ≡ log ut + log bjt, j = 0, 1, . . . (10)

where ξ̂ is a vector of estimated parameters ξ. In my application, homogenized bids are sums

of unobserved heterogeneity realization and strategic bidding component (or cost estimate

draw if j = 0).

F Unobserved Heterogeneity & Project Completion

Costs

F.1 Details of Estimation Strategy

Homogenized bids combine unobserved heterogeneity and the strategic part of bids. For

each auction t, equations (11) for j = 0, 1, . . . can be interpreted as repeated measurements

within a measurement error model, in which noisy observed value of log bujt contains a fixed

element log ut and a random noise log bjt that are additively separable and independent.

This formulation allows me to invoke a statistical result of Kotlarski (1966), who showed

that the characteristic function of a sum of two independent random variables is equal to

the product of their characteristic functions. Based on this insight, Krasnokutskaya (2011)

shows that distributions of unobserved heterogeneity and strategic components of bids are

nonparametrically identified from a joints distribution of pairs of repeated measurements,

and proposes non-parametric estimators. I adapt her framework to the environment with

endogenous entry and bidder preference weights.

Guerre, Perrigne, and Vuong (2000) show that the distribution of project completion

costs c is identified from distribution of strategic component of the bids b. To recover

the distribution of project completion costs in a setting with entry and bidder preference
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weights, it suffices to have an estimate of the distribution of a strategic component of the

bids in one configuration of actual bidders and preference weights. The main difficulty in

my application lies in the fact that the distribution of the strategic component of bidder’s j

bid bjt varies with the set of actual bidders J and ex-post bidder preference weights θjt. In

most applications, the latter is drawn from a continuous distribution, which makes it nearly

impossible to construct a sample of measurement pairs in which the noise factors follow the

same distribution using exclusively log bjt’s. The only exception are single bidder auctions,

in which log bjt depends only on the project completion cost realization. I pair them with the

operator’s price estimate realization b0t and estimate the distribution of bjt’s on the subsample

of single bidder auctions. By assumption, single bidders compete against an auctioneer who

draws from cost distribution implied by a distribution of non-preferred biddersGB. I estimate

this distribution in a similar fashion. The underlying project completion cost distribution

satisfies:

c = b− 1−GB(b)

gB(b)
, b ∼ G1(b), F c(c) = G1(b)

The distribution of unobserved heterogeneity cannot be recovered in the same step, as it

is likely to affect entry. Instead, I estimate it on a pooled sample of all bids in all auctions

with measurement pairs defined in the same way (b0t, bjt)
22.

Mean independence assumption on the distribution of b0t ensures that estimated distri-

butions of ut and bjt are expressed in the same units regardless of which subsample we use

in estimation.

F.2 Technicalities of Estimation

The residualized bids combine unobserved heterogeneity and the strategic part of bids:

log bujt ≡ log b∗jt − Ξ(xt) = log ut + log bjt =, j = 0, 1, . . . , JP (11)

22One may point out that I don’t have repeated measurement for auctions with zero bidders. If actual
bidders self-select based on values of ut, missing measurements would cause an identification problem in
estimating the distribution of unobserved heterogeneity. However, operators tend to announce new auctions
for the same order soon after realizing the previous one attracted no bidders. These auctions are usually
exactly the same, operators frequently reuse the same specification. Hence, I assume that in the repeated
auction the draw of ut is the same in both the original and repeated auction. I impute measurements from
repeated auctions to the original to control for unobserved heterogeneity in zero-bidder auctions.
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In my application, I focus on pairs containing one measurement based on the operator’s

cost estimate and one measurement related to a submitted bid: log bu0t = log ut + log b0t

log bujt = log ut + log bjt

for some j.

Let Ψ(·, ·) be the characteristic function of a joint distribution of (log bu0t, log bujt) and

Ψ1(·, ·) its partial derivative with respect to the first argument. Let Φu(·), Φ0(·) and Φj(·) de-

note characteristic functions of the distributions of unobserved heterogeneity, cost estimates,

and bids respectively. Then:

Φu(t) = exp
{∫ t

0

Ψ1(0, a)

Ψ(0, a)
da− itE[log b0]

}
(12)

Φ0(t) =
Ψ(t, 0)

Φu(t)
(13)

Φj(t) =
Ψ(0, t)

Φu(t)
(14)

Normalization is needed to uniquely pinpoint the characteristic functions of u, b0, and

bj. It is convenient to impose the normalization on the distribution of price estimate b0, as

it remains the same in each auction, regardless of the number of bidders and realizations of

ex-post bidder preference weights. I set E[log b0] = 0.

In the next step, densities gu, g0 and gj of log u, log b0 and log bj respectively are retrieved

from Fourier inversion:

gu(u) =
1

2π

∫ T

−T

exp{−itu}Φu(t)dt (15)

g0(b) =
1

2π

∫ T

−T

exp{−itb}Φ0(t)dt (16)

gj(b) =
1

2π

∫ T

−T

exp{−itb}Φj(t)dt (17)
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The densities of u, b0 and bj are given by:

fx(u) =
gu(log u)

u
(18)

f 0(b) =
g0(log b)

b
(19)

f j(b) =
gj(log b)

b
(20)

(21)

The estimation follows a nonparametric method pioneered by Li and Vuong (1998). This

approach produces uniformly consistent estimates. Krasnokutskaya (2011) provide converge

rates for a version with unobserved heterogeneity. In the first step, I estimate the character-

istic function of the joint distribution of (log bu0t, log bujt) and its derivative by:

Ψ̂(t1, t2) =
1

N

N∑
i=1

exp
{
it1 · log bu0i + it2 · log buji

}
Ψ̂1(t1, t2) =

1

N

N∑
i=1

i log bu0i · exp
{
it1 · log bu0i + it2 · log buji

}
In the second step, I recover equations (12 - 18) using Ψ̂(t1, t2) and Ψ̂1(t1, t2).

Finally, to get an estimate of the distribution of individual project completion costs I

first obtain the cumulative distribution function of bids rationalizing bidding in the single

bidder auctions GB
j (b) =

∫ c

o
gBj (t)dt. Then using the insight of Guerre, Perrigne, and Vuong

(2000). Using single bidder auctions, for each b I obtain the cost:

c = b−
1−GB

j (b)

gBj (b)

The distribution of project completion cost satisfies F c(c) = F b
j (b).

There is a few technicalities behind this approach. First, in finite samples estimates of

fourier transform may oscillate a lot. In order to deal with it I follow Diggle and Hall (1993)

and introduce a damp factor:

d(t, T ) = 1[|t| < T ] ·
(
1− |t|

T

)
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The estimated densities become:

fu(u) =
1

2π

∫ T

−T

d(t, T ) exp{−itu}Φu(t)dt (22)

f0(r) =
1

2π

∫ T

−T

d(t, T ) exp{−itr}Φ0(t)dt (23)

f j(b) =
1

2π

∫ T

−T

d(t, T ) exp{−itb}Φj(t)dt (24)

Another issue is choosing a smoothing parameter T . Large T produces under-smoothing

and wiggly, oscillating estimates. T too small over-smooths it. There are two approaches

in the literature. One, pioneered by Li, Perrigne, and Vuong (2000) and Krasnokutskaya

(2011) relies on choosing T in a way to match moments of estimates distribution with data.

Another used by among other Bonhomme and Robin (2010), relies on approximation to the

mean integrated square error of the kernel density estimator. I do not have a kernel here, so

I use the former. In choosing T I minimize the sum of the square deviation of the estimated

mean and variance for u, r, and b separately. I also avoid large values of T that introduce a

significant amount of oscillations into estimates.

This procedure also returns bounds of support of the unknown distributions. In theory,

the bounds of estimated distributions should be obtained at the stage of Fourier transform

– the obtained density should be zero at all points outside of the support. With finite

samples, this is never the case. Therefore, I follow the data-driven approach by Li, Perrigne,

and Vuong (2000); Krasnokutskaya (2011); Andreyanov and Caoui (2022) extending it to the

case with cost estimate and bid. Recall that we observe repeated measurement on bu0 = u+r

and buj = u+ b. In an infinite sample:

min bu0 = u+ r (25)

max bu0 = u+ r (26)

min buj = u+ b (27)

max buj = u+ b (28)

max bu0 − buj = r − b (29)
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Which makes 5 linear equations in 6 unknowns. The sixth equation comes from my

normalization: ∫ r

r

r · f 0(r)dr = 0

Analogously to Krasnokutskaya (2011), one can show that this equation has exactly one

solution which guarantees that the system has a unique solution. I use sample analog of these

equations to obtain support bounds of estimated distributions. Krasnokutskaya (2011) shows

that this approach yields consistent estimates when the data comes from a data generating

process with unobserved heterogeneity.
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G Latent Class Mixing Weights – parameter esti-

mates

Table 11: Parameter estimates of σ3—mixing weights of latent class distributions

mixing weights parameters σ3

incumbent 1.18∗∗∗
(.24)

brand’s current generation in the fleet .444.
(.29)

won within past year .936∗∗
(.469)

2nd hand delivery within past year .21.
(.409)

won within past 3 yrs .824∗∗
(.354)

2nd hand delivery within past 3 yrs −.56.
(.428)

producer’s share in fleet if wins −1.4∗∗∗
(.425)

order size (log) .497∗∗∗
(.085)

ordered drive already in the fleet −.52∗∗
(.219)

EU funds .253.
(.182)

compatibility index (non-incumbents) 1.32∗∗
(.667)

constant −1.6∗∗∗
(.404)

Standard errors in parentheses. p. val: ∗∗∗ ≤ 0.01, ∗∗ ≤ 0.05, ∗ ≤ 0.1.

H APPENDIX Counterfactual Outcomes – Numeri-

cal Approach

There are two crucial aspects of the economic environment in my application that need to

be accounted for in counterfactual analysis. First, even though the decision model is static,

the identity of the winner in the current auction affects future outcomes. Second, there is

inherent uncertainty regarding the identity of the auction winner associated with project

completion costs at the bidding stage, potential bidders’ entry costs, and operators’ shocks

related to the choice of ex-ante bidder preference weights. To account for these features, I

adopt a specific way of conducting counterfactual analysis. I focus my analysis on paths of

auctions. A path is an ordered series of auctions by an operator in which the fleet evolves

according to the identities of winners. I maintain the order, timing, and characteristics of

auctions from the data to account for factors related to the operator’s demand for new buses
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that are not accommodated in my model, including the availability of funding, expiration

of the current fleet, and technological progress (e.g., zero-emission drives). For each auction

on a path, I obtain the expectation of the value of operator’s utility associated with the

order, prices submitted by potential bidders, the number of actual bidders, and winning

probabilities. I use the latter to draw the winner’s identity and proceed to the next auction

on the path. I simulate paths within an operator23 and average them to obtain one path of

expected outcomes per operator.

23For nearly 90% of the operators I am able to simulate all counterfactual paths and obtain the probability
of their occurrence. For the remaining operators—who organized many auctions during the observation
window—I obtain the result by randomly drawing from the set of all possible paths.
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